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THE GEOMETRY OF DURER'S CONCHOID 

HENRY E. FETTIS 

The plane curve which has come to be known as "Durer's Conchoid" was named for 

the 16th century architect, August Dtlrer, who devised it as an example of a class 

of curves called "conch curves" for their resemblance to sea shells Til. Althouqh 

it involves two positive parameters, a and b, their number can be reduced to one 
by considering either of them as unity. The curve is the one which is traced by 

the endpoints of a moving straightedge of length 2a whose midpoint remains on the 
#-axis of a Cartesian coordinate system at a variable distance, £, from the origin, 

and simultaneously passes through the point (o, b-t) on the z/-axis. (See Figure l.) 

From elementary considerations, the parametric equations (with t as parameter) 
are found to be 

x2 + y2 - 2xt + t2 - a2 = 0, 
(1) 

(y - b - x)t + t2 + bx = 0. 

Eliminating t from these equations gives the Cartesian equation of the curve as 

$>(x9y) = (x2+y2-bx-a2)2 - (x+y-b){(x2+y2-a2)(x-y+b) - 2bx2} = 0 . (2) 

Geometrically, the curve has a number of interesting properties, some of 

which are given in T2, p. 1591. For example, by writing the second of equations 

(l) in the form 

x-t t 

it can be seen that, for large values of t, the quantities y and x-t both approach 

a constant value, a, and from the first of equations (l) we find 2a2 = a2, so that 

a = ±a//2. Thus the curve (which consists of two branches) has horizontal asymptotes 

situated at equal distances above and below the #-axis. (This fact and those which 

follow are illustrated in Figures 2 to «+.) One branch approaches the upper asymptote 

from above as x + -« (t -> -«0 and the lower asymptote from above as x -> °° (£-*•«), 

while the other branch approaches, respectively, the upper and lower asymptotes 

from below as x -> » and «-*--». 

The curve also has two singular points, one of which is always a nodal point, 

while the other may be a node, a cusp, or a conjugate (isolated) point, depending 

on the relative sizes of a and b. Apparently, a detailed study of this feature of 

the curve has not been made, although the location of the cusp and the condition 

for the existence of the cusp or loop are given in [2]. 
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P0(*=o) 

-3TPj(* = 0) 

The location and identification of the singula' points of this curve from its 

Cartesian equation (2), by the usual criteria involving the first and second partial 

derivatives of $(x9y)9 would prove to be a formidable task. However, by returning 

to the original parametric equations (1), it becomes unbelievably simple. 

Eliminating t2 between equations (l), we get 

, _ x2 t y2 - bx -a2 

x + y - b ' 

and it is now evident that, to an arbitrary point (x,y) on the curve, there will 

correspond, in general, a unique value of t. The exception occurs when x and y are 



such that, simultaneously, 

34 

y2 - bx - a2 

(3) 
( x + y - b = 0. 

The first of these equations is that of a circle with center (b/29 o) and radius 

(a2 + b2/i\)2, while the second represents a straight line with x- and ̂ -intercepts 

both equal to b. The points of intersection of this circle and line determine the 

singular points, the abscissae of which are obtained by solving simultaneously the 

two equations (3)9 resulting in the single quadratic equation 

2x2 - 3bx + b2 
0, 

whose roots are 

3b ± Jbzf8az 

O) 

( 5 ) 

and the corresponding values of y are 

y 
+ /b^fSa7 

( 6 ) 

The values of t associated with these coordinates are easily found by substituting 

either relation (3) into the corresponding equation (l), resulting in the quadratic 

equation 

Figure ? (a = 3 , jb = 1 



3F -

Figure 4 (a = 3 , Jb = 5) 
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t2 - 2xt + bx = 0, 

with roots 

t - x ± Jx(x-b). 

It is clear from (5) and (6) that the values of x and y are always real. However, 

this will not necessarily be the case for the associated values of t. (For con­

venience, the value of x associated with the plus sign in (5) will be designated 
as x , the other as x_.) 

It is first noted that x > o and that 
+ 

On2 

+ h+vb2+Ba2 

so that the values of t associated with this singular point are always real and 

distinct. Hence this point is, under all circumstances, a nodal point. On the 

other hand, it is seen from (4) that x x_ = (b2-a2)/2, and so 

x_ = o according as b = a, 

while 

x _ - b - ~ < 0 

in all cases. It follows that the associated values of t are 

real and distinct if b < a, 
real and equal if b = a, 
complex conjugates if b > a, 

and this singular point is a node, a cusp, or a conjugate point according as b < a, 
b = a, or b > a. In particular, when b = a, the cusp occurs at the point (o, a ) , 
corresponding to t = o, while the other singular point has coordinates (3a/2, -a/2), 

with t = J(3±/3)a. 

The general shape of the curve for a = 3, and for each of the three cases 

b - 1,3,5, is shown in T2, p. 159"i. These illustrations have been reconstructed 

here as Figures 2, 3, and 4. 

The plane curve described here provides an excellent example of a number of 

curves for which the determination of the singular points from their Cartesian 

equation would prove formidable, whereas, with the aid of the parametric representa­

tion, the problem becomes so simple as to be almost elementary. 
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PR I HE POSITIONAL SEQUENCES 

JACQUES P. SAUVg and CHARLES W. TRIGG 

Tabulated below are 97 (a prime number) pairwise disjoint sequences each 

consisting of five or more primes less than io7. For any term n in any of the se­
quences, the next term in the same sequence is the nth prime p ; and the first term 
of any sequence (which we will call the sequence starter) is the smallest prime that 

does not appear in any of the preceding sequences. We call these prime positional 
sequences. For example, the seventh sequence starts with 37, which is the smallest 

prime not included in any of the first six sequences, and 

p 3 7 = 157, p l s 7 = 919, pgig = 7193, p 7 1 9 3 = 72727, p72727 = 919913, p9i9913 > ^7. 

The smallest prime not included in any of the 97 sequences is 727, but the sequence 

starting with 727 has its fifth term greater than io7, and is therefore omitted, as 

are all subsequent sequences. 

52711 648391 9737333 2 

7 

13 

19 

23 

29 

37 

43 

47 

53 

61 

71 

73 

79 

89 

3 

17 

41 

67 

83 

109 

157 

191 

211 

241 

283 

353 

367 

401 

461 

5 

59 

179 

331 

431 

599 

919 

1153 

1297 

1523 

1847 

2381 

2477 

2749 

3259 

11 

277 

1063 

2221 

3001 

4397 

7193 

9319 

10631 

12763 

15823 

21179 

22093 

24859 

30133 

31 

1787 

8527 

19577 

27457 

42043 

72727 

96797 

112129 

137077 

173867 

239489 

250751 

285191 

352007 

127 

15299 

87803 

219613 

318211 

506683 

919913 

1254739* 

1471343 

1828669 

2364361 

3338989 

3509299 

4030889 

5054303 

709 5381 

167449 2269733 

1128889 

3042161 

4535189 

7474967 
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97 

101 

103 

107 

113 

131 

137 

139 

149 

151 

163 

167 

173 

181 

193 

197 

199 

223 

227 

229 

233 

239 

251 

257 

263 

269 

271 

281 

293 

307 

311 

313 

317 

337 

347 

349 

359 

373 

509 

547 

563 

587 

617 

739 

773 

797 

859 

877 

967 

991 

1031 

1087 

1171 

1201 

1217 

1409 

1433 

1447 

1471 

1499 

1597 

1621 

1669 

1723 

1741 

1823 

1913 

2027 

2063 

2081 

2099 

2269 

2341 

2351 

2417 

2549 

3637 

3943 

4091 

4273 

4549 

5623 

5869 

6113 

6661 

6823 

7607 

7841 

8221 

8719 

9461 

9739 

9859 

11743 

11953 

12097 

12301 

12547 

13469 

13709 

14177 

14723 

14867 

15641 

16519 

17627 

17987 

18149 

18311 

20063 

20773 

20899 

21529 

22811 

33967 

37217 

38833 

40819 

43651 

55351 

57943 

60647 

66851 

68639 

77431 

80071 

84347 

90023 

98519 

101701 

103069 

125113 

127643 

129229 

131707 

134597 

145547 

148439 

153877 

160483 

162257 

171697 

182261 

195677 

200017 

202001 

204067 

225503 

234293 

235891 

243781 

25S657 

401519 5823667 

443419 6478961 

464939 6816631 

490643 7220981 

527623 7807321 

683873 

718807 

755387 

839483 

864013* 

985151 

1021271 

1080923 

1159901 

1278779 

1323503 

1342907* 

1656649 

1693031 

1715761 

1751411 

1793237 

1950629 

1993039 

2071583* 

2167937 

2193689 

2332537 

2487943 

2685911 

2750357 

2779781 

2810191 

3129913 

3260657 

3284657* 

3403457 

3643579 
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379 

383 

389 

397 

409 

419 

421 

433 

439 

443 

449 

457 

463 

467 

479 

487 

491 

499 

503 

521 

523 

541 

557 

569 

571 

577 

593 

601 

607 

613 

619 

631 

641 

643 

647 

653 

659 

2609 

2647 

2683 

2719 

2803 

2897 

2909 

3019 

3067 

3109 

3169 

3229 

3299 

3319 

3407 

3469 

3517 

3559 

3593 

3733 

3761 

3911 

4027 

4133 

4153 

4217 

4339 

4421 

4463 

4517 

4567 

4663 

4759 

4787 

4801 

4877 

4933 

23431 

23801 

24107 

24509 

25423 

26371 

26489 

27689 

28109 

28573 

29153 

29803 

30557 

30781 

31667 

32341 

32797 

33203 

33569 

35023 

35311 

36887 

38153 

39239 

39451 

40151 

41491 

42293 

42697 

43283 

43889 

44879 

45971 

46279 

46451 

47297 

47857 

267439 

271939 

275837 

280913 

292489 

304553 

305999 

321017 

326203 

332099 

339601 

347849 

357473 

360293 

371981 

380557 

386401 

391711 

396269 

415253 

418961 

439357 

455849 

470207 

472837 

481847 

499403 

510031 

515401 

522829 

530773 

543967 

558643 

562711 

565069 

576203 

583523 

3760921* 

3829223 

3888551 

3965483 

4142053 

4326473 

4348681 

4578163* 

4658099 

4748047 

4863959 

4989697 

5138719 

5182717 

5363167 

5496349 

5587537 

5670851 

5741453 

6037513 

6095731* 

6415081 

6673993 

6898807 

6940103 

7081709 

7359427 

7528669 

7612799 

7730539 

7856939 

8066533 

8300687 

8365481 

8402833 

8580151 

8696917 
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661 

673 

677 

683 

691 

701 

719 

4943 

5021 

5059 

5107 

5189 

5281 

5441 

47963 

48821 

49207 

49739 

50591 

51599 

53353 

584999 

596243 

601397 

608459 

619739 

633467 

657121 

8720227 

8900383 

8982923 

9096533 

9276991 

9498161 

9878657 

97 of the first 128 primes are sequence starters. One of these is even. Among 

the odd starters, 49 have the form 6k-l and 47 have the form ek+1. Included are 14 

pairs of twin primes, underscored in the table. 

Nine of the starters are palindromes: 2, 7, 101, 131, 151, 181, 313, 373, and 

3830 Six other palindromes appear in the sequences: ll, 191, 353, 797, 919, and the 

smoothly undulating 72727. 

The sequence member 19577 begins with its starter, whereas their starters ter­

minate 17, 277, 1787, 129229, and 2364361. Sequence members in which their starters 

(underscored) are imbedded are 127, 277, 1787, 52711, 167449, 219613, 1471343, and 

2269733. 

In the set of primes less than io7, the longest prime positional sequence has 

a prime number of terms, n . In a certain sense, the last prime of that sequences 

9737333, which contains seven digits all but one of which are prime, can be said 

to be the primest prime less that io7. We observe that the two previous terms of 

this sequence contain the nine nonzero digits, with only the digit l appearing more 

than once. In the eleven terms of this sequence together, the frequency of occur­

rence of the digits 

0 1 2 3 4 5 6 7 8 9 

is, respectively, 

1 8 3 8 1 3 1 5 2 3, 

an undulating sequence. Thus there are 8 even digits and 27 odd digits, and both 

frequencies are cubes. The prime digits number 19, a prime, and the nonprime digits 

number 16, a square. 

One of these prime positional sequences contains 8 terms, four have 7 terms, 

fourteen have 6 terms, and seventy-seven have 5 terms. 

Among the primes in the sequences, three-digit repdigits occur three times 

at the beginning: 222l9 6661, 3338989 ; three times inside: 200017, 1128889, 3888551; 

and three times at the end: 305999, 584999, 9737333. All in all, a plethora of 
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threes. And there are more: among the sequence starters there are 9 (a power of 3) 

whose digits are all powers of 3: 13, 19, 113, 131, 139, 193, 199, 3ii, 313; and 

among the sequence enders there is l (a power of 3) whose digits are all powers 

of 3: 919913. Finally, there are 8 (a 3rd power) sequence enders that contain dis­

tinct digits (these are indicated by asterisks in the table); and l (a power of 3) 

of them is a permutation of consecutive digits: 3284657. 

Depto Sistemas e Computagao, CCT-UFPB, Campina Grande, PB 58100, Brazil. 

2404 Loring Street, San Diego, California 92109. 

ft ft ft 

THE OLYMPIAD CORNER: 42 

M.S. KLAMKIN 

It is now official: the 24th International Mathematical Olympiad will be held 

in Paris, France, from July l to July 12, 1983. Each national delegation will consist 

of six students, a leader, and a deputy leader. The official languages will be 

English, French, German, and Russian. 
ft 

I now give the problems posed at the 1982 University of Alberta Undergraduate 

Mathematics Contest. The questions were set by G. Butler, Andy Liu, and myself. 

I shall publish solutions in this column next month. 

UNIVERSITY OF ALBERTA UNDERGRADUATE MATHEMATICS CONTEST 

November 22, 1982 — Time: 3 hours 

1, Find the equation of a cone with vertex at the oriqin and containing the in­

tersection of the ellipsoid x2/a2 + y2/b2 + z2/o2 = 1 with the sphere 

x2+y2+z2 = v2 , where a < r < c. 

2, Prove that the following two statements are equivalent: 

(a) There are no positive integers a,b9c such that a* - bh - c2 . 

(b) There are no positive integers w,x,y,z such that w2 + x2 =# 2 and w2 -x2 -z2. 

Assuming that either (a) or (b) has been proved, deduce the following special 

case of Fermat's Last Theorem: There are no -positive integers x3y3z such that 

xu + yh - z1*. 

3, Let / be a three times differentiate real-valued function of a real variable 

such that the recurrence relation x . - fix ) with x\ > o always has the 
tt+l ^ n 

property that l i n i ng = 1. Evaluate f(o)9 / 'Co) , f"(o)9 and / m ( o ) . 
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Us Find all solutions (x\ ) of the system of equations 

l 5 l 5 

T a.x. . = ) a.x. -
j+1 ^=l " fc+1 t=l 

for j.fc = 0 ,1 ,2 ,3 ,4 , where a? = x if m = n (mod 5) . 

5, An airplane flies at a constant speed relative to the wind which varies 

continuously with position but does not vary with time. It flies a closed 

path and then flies the same path in the reverse direction. Prove that the total 

time of flight is greater than if there were no wind. 

* 

I now present solutions to the problems of Practice Set 16 T1983: 14]. 

16-1. Solve the equation (x2 - 4)(x2 - 2x) = 2. 

Solution, 

The equation is equivalent to 

(x2-x)2 - 2(x2-x) + 1 = 3(x-l)2
9 

from which 

x2 - x - 1 = ± /3(a:-l). 

The four roots of these two quadratics are 

x = J(l + /3 ± /8-2/3) 

and 

x = J(l - /3 ± /8+2/3). 

Alternate solution. 

Since # * l9 we can set x = \~t with t * o and obtain the equivalent equation 

(t_|)2 _ 2(t_l) . 2 = 09 

from which 

t - | = 1 ± /3, 

and this leads to the same four roots as above. 

16-2. Given the face angles of a trihedral angle T, determine the locus of 
the points of contact of its faces with its inscribed spheres. 

Solution. 

The locus consists of three straight lines, one in each face, and all con-
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current at the vertex V of T. Since the center of any of the inscribed spheres is 

equidistant from the three faces of T, the centers of all the inscribed spheres lie 

on a line I through V which is the common intersection of the three planes which 

bisect the three dihedral angles of T. Then the points of contact of the spheres 

with any one face is obtained by projecting I orthogonally on that face. 

Alternate solution. 

We arrive at the same result by notinq that the set of inscribed spheres forms 

a nomothetic family with nomothetic center V, and that the points of contact on any 

one face are corresponding points in this homothecy. 

16-3, A length L of wire is cut into two pieces which are bent into a circle 
and a square. Determine the minimum and the maximum of the sum of the 

two areas formed. 

Solution. 

Let L and A denote the perimeter and area, respectively, of the circle, and 

let L and A denote the corresponding quantities for the square. We have 

A = TO*2, where r = 

and 

A - a2
 9 where a -

s 

We wish to minimize and maximize 

L2 

A = A + A = r~ 
O S ^TT 

Lam, 

V4-

L2 

s 
+ 16' 

where L + L = L. 
o s 

To find the minimum, we apply Cauchy's inequality: 

L2 L2 

(_| + _!,(lw +16) a aa + v
2 = * 

with equal i ty i f and only i f 

Thus 

L L 
JL - _£ - £ 
4TT 16 " UTT+IG* 

A m m ~ 47T+16' 

and this minimum is attained when 
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L = ™ a n d L -_ 16£ 
(2 " ^TT+16 S 41T+16* 

To find the maximum, we note that 

L 2 L 2 L 2 L 2 ,L +L x 2
 r 2 

4TT 16 M-TT 4 T T 4TTS 

with equality if and only if L = o. Thus 

This result also follows from the isoperimetric theorem according to which, for all 

closed plane curves of given length, the circle has the maximum area. 

If, as the problem states, the wire is actually cut into two pieces, then (l) 

is a least upper bound that is never attained. 

Editor's note. All communications about this column should be sent to Pro­
fessor M.S. Klamkin, Department of Mathematics, University of Alberta, Edmonton, 
Alberta, Canada T6G 2G1. 

& & it 

THE PUZZLE CORNER 

Vuzzle No. 29: Rebus (6) 

PjS" 

I'm fond of palominos, when they're fleet; 

But slow or fast, I also like COMPLETE. 

Puzzle No. 30: Rebus (6 7) 

(G + G)/2, /G^"G 

Piece of the "Rock" 

Had no musician; 

"Patient" Griselda 

Had no physician; 

"Fair" Maid of Perth, 

No ethical mission. 

Words that describe 

May have a CONDITION. 

ALAN WAYNE, Holiday, Florida 
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P R O B L E M S - - P R O B L F M E S 

Problem proposals and solutions should be sent to the editor, whose address 
appears on the front page of this issue. Proposals should, whenever possible, be 
accompanied by a solution, references, and other insights which are likely to be 
of help to the editor. An asterisk (*) after a number indicates a problem submit­
ted without a solution. 

Original problems are particularly sought. But other interesting problems 
may also be acceptable provided they are not too well known and references are 
given as to their provenance. Ordinarily, if the originator of a problem can be 
located, it should not be submitted by somebody else without his permission. 

To facilitate their consideration, your solutions, typewritten or neatly hand­
written on signed, separate sheets, should preferably be mailed to the editor before 
September 1, 1983, although solutions received after that date will also be consider­
ed until the time when a solution is published. 

8111 Proposed by J.A.H. Hunter, Toronto, Ontario. 

Some say that's how all the trouble started. But it must ADAM 
ATE 

have been very tempting, for that Adam's APPLE was truly prime! THAT 

RED 
APPLE 

8121 Proposed by Ban Sokolowsky, California State University at Los Angeles. 

Let C be a given circle, and let C , i = 1,2,3,4, be circles such that 
(i) C. is tangent to C at A. for i = 1,2,3,4; 

(ii) c. is tangent to c. for i = 1,2,3. 
Furthermore, let I be a line tangent to C at the other extremity of the diameter 
of C through Aa, and, for i = 2,3,4, let A ^ intersect I in P̂ .. 

Prove that, if C9 Ci, and Ck are fixed, then the ratio of unsigned lengths 

P2P3/P3P4 is constant for all circles C2 and C3 that satisfy (i) and (ii). 

813 . Proposed by Charles W. Trigg, San Diego, California. 

The array on the right is a "staircase" of primes of the form 31 

3.1. When 3 is replaced by some other digit, the furthest any staircase 331 

of primes goes is 6661, since 66661 = 7«9523. 3331 

How much further does the 3^1 staircase go before a composite number 33331 

appears? Subsequent to that, what is the next prime in the staircase? 333331 

3333331 

814, Proposed by Leon Bankoff, Los Angeles, California. 

Let D denote the point on BC cut by the internal bisector of angle 

BAC in the Heronian triangle whose sides are AB = 14, BC = 13, CA = 15. With 

D as center, describe the circle touching AC in L and cutting the extension of 

AD in J. Show that AJ/AL = (/5+D/2, the Golden Ratio. 
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8151 Proposed by J.T. Groenman, Arnhem, The Netherlands, 

Let ABC be a triangle with sides a9b9c9 internal angle bisectors t , 
£, ,£ , and semi perimeter s. Prove that the following inequalities hold, with 

equality if and only if the triangle is equilateral: 

(a) ^5T + H7 + 5F) £ %k-> 
a b c 

at bth at i — 

(b) 3^ a / + ^ + 0/^ycJfF-
8161 Proposed by George Tsintsifas, Thessaloniki, Greece. 

Let a9b9c be the sides of a triangle with semi perimeter s9 inradius r9 

and circumradius R. Prove that, with sums and product cyclic over a9b9o9 

(a) li(b+c) < 8sR(R+2r), 

(b) lbc(b+c) < 8sR(R+r)9 

(c) la3 £ 8sO?2-r2). 

817, Proposed by Stanley Rabinowitz, Digital Equipment Corp., Merrimack, 

New Hampshire. 

(a) Suppose that to each point on the circumference of a circle we arbitrar­

ily assign the color red or green. Three distinct points of the same color will 

be said to form a monochromatic triangle. Prove that there are monochromatic 

isosceles triangles. 

(b)" Prove or disprove that there are monochromatic isosceles triangles if 

to every point on the circumference of a circle we arbitrarily assign one of k 
colors9 where k > 2. 

818, Proposed by A. P. Guinand, Trent University, Peterborough, Ontario. 

Let ABC be a scalene triangle with circumcentre 0 and orthocentre H, 

and let P be the point where the internal bisector of angle A intersects the Euler 
line OH. If 0, H9 P only are given, construct an angle equal to angle A, using 
only ruler and compass. 

819, Proposed by H. Kestelman, University College, London, England. 

Let A and B be n*n Hermitian matrices. Prove that AB - BA is singular 
if A and B have a common eigenvector. Prove that the converse is true if n = 2 but 
not if n > 2. 
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820, Proposed by W.R. Utzy University of Missouri-Columbia, 

Let P be a polynomial with real coefficients. Devise an algorithm for 

summing the series 

n-q 
* ft ft 

S O L U T I O N S 

iVo problem is ever permanently closed. The editor will always he pleased to 
consider for publication new solutions or new insights on past problems. 

7071 C1982: 15] Proposed by Charles W. Trigg s San Diego, California. 

In the decimal system, how many eight-digit palindromes are the products 

of two consecutive integers? 

I. Composite of the (nearly identical) solutions of Bob Prielipp3 University 

of Wisconsin-Oshkosh, and the proposer. 

Products of two consecutive integers are called pronic numbers [ll. Pronic' 

numbers end in o, 2, or 6; and they end in 06 or 56 if they end in 6. Consequent­

ly, the pronic palindromes x(x+l) we are seeking must lie between 

20000002 and 29999992 which implies 4472 < x < 5476, (1) 

or between 

60000006 and 60999906 which implies 7746 < x < 7809, (2) 

or between 

65000056 and 65999956 which implies 8062 < x < 8123. (3) 

An eight-digit palindrome is divisible by 11, so either x or x+l is a multiple 

of 11. In (l), x must end in 1, 3, 6, or 8. There are 36 such integers x with 

x = 0 (mod 11) and 37 with x+l = 0 (mod ll). In (2) and (3), x must end in 2 or 

7. In these ranges, we have x = 0 (mod ll) only for x = 7777, 8107; and x+l = 0 

(mod ll) only for x = 7787, 8062, 8117. 

We must therefore test 78 values of x. Multiplying each by the corresponding 

x+l yields a palindrome only for x = 5291 and 5313. The only solutions are 

5291*5292 = 27999972, 

5313«5314 = 28233282. 

II. Comment by Milton P. Eisner3 Mount Vernon College_, Washington, B.C. 

If initial zeros are allowed, there are three additional solutions: 
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00000000 = 0-1, 

01233210 = 1110-1111, 

06966960 = 2639*2640. 

III. Comment by Stanley Babinowitz3 Digital Equipment Corp.3 Merrimaok3 New 

Hampshire, 

Other facts of interest revealed by a computer search: 

(a) There is only one eight-digit palindrome that is half a pronic number 

(i.e., is a triangular number): 

35133153 = J-8382-8383. 

(b) There are no eight-digit palindromes that are squares. 

(c) There are no eight-digit palindromes that are the product of three or 

more consecutive integers. 

(d) The only eight-digit palindromes of the form n(n+d) 9 where 2 < d < 9, are 

32855823 = 5731-(5731+2), 72999927 = 8541*(8541+6), 

99999999 = 9999-(9999+2), 81099018 = 9002-(9002+7), 

29311392 = 5412-(5412+4), 48999984 = 6996*(6996+8), 

69555596 = 8338*(8338+4), 88322388 = 9394*(9394+8), 

71588517 = 8459*(8459+4), 29122192 = 5392-(5392+9). 

IV. Comment by the proposer. 

There are just ten pronic palindromes less than lo10. These are 

1-2 = 2, 1621-1622 = 2629262, 

2-3 = 6, 2457-2458 = 6039306, 

16-17 = 272, 5291-5292 = 27999972, 

77-78 = 6006, 5313-5314 = 28233282, 

538-539 = 289982, 52008-52009 = 2704884072. 

There is only one palindrome less than lo10 which is the product of three or 

four consecutive integers (and, of course, none of any size which is the product 

of five or more consecutive integers). It is the reppalindrome 

77-78-79 = 474474. 

Note in particular that 77, 77-78, and 77-78-79 are all palindromes. 

Also solved by E.C. BUISSANT DES AMORIE, Amstelveen, The Netherlands; CLAYTON 
Wa DODGE, University of Maine at Orono; MILTON P. EISNER, Mount Vernon College, 
Washington, D.C.; MEIR FEDER, Haifa, Israel; J.T. GROENMAN, Arnhem, The Netherlands; 
FRIEND H. KIERSTEAD, JR., Cuyahoga Falls, Ohio; STANLEY RABINOWITZ, Digital Equip­
ment Corp., Merrimack, New Hampshire; ALAN WAYNE, Holiday, Florida; and KENNETH 
M. WILKE, Topeka, Kansas. 
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REFERENCE 
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7 0 8 , C1982: 15] Proposed by Vedula N. Murty3 Pennsylvania State Universitys 

Capitol Campus. 

A triangle has sides a,b9c9 semi perimeter s, inradius p, and circumradius R. 

(a) Prove that 

(2a-s)(b-c)2 + (2b~s)(o-a)2 + (2c-s)(a-b)2 > 0 , 

with equality just when the triangle is equilateral. 

(b) Prove that the inequality in (a) is equivalent to each of the following: 

3(a3+b3+c3+3abc) < 4s(a2+b2+c2), 

s2 > 16Rr-5r2. 

Solution by W. J. Blundon, Memorial University of Newfoundland. 

We will first show that the three inequalities 

(2a-s)(b-c)2 + (2b-s)(c-a)2 + (2c-s)(a-b)2 > 0, (1) 

hs(a2+b2+c2) > 3(a3+b3+c3+3abc)9 (2) 

s2 > 16Rr - 5 r 2
9 (3) 

are equivalent, and then prove that one of them is (and hence all three are) valid, 

with equality if and only if the triangle is equilateral. In establishing equiv­

alence, we will use the well-known relations 

a+b+c - 2s 9 bc+ca+ab = s2+^Rr+r2, aba = ^Rrs, 

from which follow 

a2+b2+c2 = (a+b+c)2 - 2(bc+ca+ab) = 2(s2-^Rr-r2) 

and 

a3+b3+o3 = {a+b+c)3 - 3(a+b+c)(bc+ca+ab) + 3abc = 2(s3-6Rrs-3r2s). 

With sums cyclic over a9b,c9 we have 

T,(2a-s)(b-c)2 = lZ(3a-b-c)(b2-2bc+c2) 

= il(3ab2+3ac2+b2c+bc2-b3-c3-6abc) 

= 2lbc(b+c) - la3 - 9abc 

= 2(la)(la2) - 3la3 - 9abc 
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= Hsla2 - 3(la3+3abo) (4) 

= Ss(s2-^Er-r2>> - 6(ss-3r2s^ 

= 2s(s2-16i?r+5r2). (5) 

Now (l) <=> (2) follows from (n) and, since s > o, (2) <=> (3) follows from (5). 

At this point, to establish the validity of (l)-(3) we could simply refer to 

Bottema Cl] where a proof of (3) is given. We will instead establish (l) directly, 

because it will lead to an interesting generalization. For this purpose, we will 

use Sahurfs Inequality (see [2] or T3]): If t is any real number and x*ysz > 0, 

then 

t t t 
x (x-y)(x-z) + y (y-z)(y-x) + z (z-x^iz-y) > 0, (6) 

with equality if and only if x - y - z. 

Let x = s-a9 y - s-b, z - S-Q\ then x9y,z > 0 and a - y+z9 b = z+x, o = x+y. 

With cyclic sums again, we have 

l(2a-s)(b-o^2 = I(y+z-x)(y-z )2 

= T,(y3+z^+2xyz-y2z-yz2-xy2-z2x) 

= 2Ix3 - 2Zyz(y+z) + 6xyz 

- 2Zx{x-y){x-z), 

and (l) follows from (6) with t = 1. 
More generally, for any real number t we get from (6) 

Z(8-a)*(2>-a)(e-a) > 0, 

with equality if and only if a = b = o, and this is equivalent to (l)-(3) when £ = 1. 

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; KESIRAJU SATYANARAYANA, 
Gagan Mahal Colony, Hyderabad, India; and the proposer. 

REFERENCES 
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3. D.S. Mitrinovic, Analytic Inequalities, Springer-Verlag, New York, 1970, 

pp. 119-121. 

* * A 

709, T1982: 151 Proposed by F.G.B, Maskells Algonquin College^ Ottawa^ 

Ontario. 

ABC is a triangle with incentre I, and DEF is the pedal triangle of the point 
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I with respect to triangle ABC. Show that it is always possible to construct with 

straightedge and compass four circles each of which is tangent to each of the cir-

cumcircles of triangles ABC, EIF, FID, and DIE, provided that triangle ABC is not 

equilateral. 

Solution by Jovdi Dou, Barcelona_, Spain. 

Let a, 3, y, Q9 and <(> be circumcircles of triangles AFE, BDF, CED, ABC, and 

DEF, respectively; and let $ be the inversion with cf> as the circle of inversion. 

The circles a,$,y, which all pass through the centre of inversion I, invert into 

the sides of triangle DEF, and ft inverts into &, the nine-point circle of triangle 

DEF ri, p. 243, Ex. 18(a) 1. By Feuerbach's Theorem ri> p. 1051, OJ is tangent to 

the four tritangent circles of triangle DEF, namely <50 (the incircle) and 6i,629 

63 (the excircles). The four required circles are therefore $(<50)9 $(61), $(S 2), 

and $(63), each of which is tangent to a, 3, y, and ft. It is clear that the four 

circles $(6.) can be constructed with straightedge and compass. Indeed, any circle 

tritangent to a,$,y can be so constructed (problem of Apollonius). 

The proposer's decision to avoid equilateral triangles is not really necessary. 

For then 00 = <50J so <£>(<50) coincides with Q and is thus "supertangent" to ft. 

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; and the proposer. 

REFERENCE 

1. Nathan Altshiller Court, College Geometry* Barnes & Noble, New York, 1952. 
JV ii * 

7101 C1982: 161 Proposed by Gdli Salvatore, Perkins, Quebec. 

Let 2' and z" be the roots of the equation 

1 
3 + - = 2(cos (f) + i sin <(>), 

where 0 < <J> < TT. 

(a) Show that z'H9 z" + i have the same argument, and that z'-i, zn-i have 

the same modulus. 

(b) Find the locus of the roots z' 9z " in the complex plane when <J> varies 

from 0 to TT. 

Solution by Van Sokolowsky3 California State University at Los Angeles. 

(a) We will for typographical convenience write cis0 for cose + isine. The 

given equation is equivalent to 

z2 - 2s cis <f> + 1 = 0 : (l) 
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hence the complex number 

a E 5J+*1' = cis(J> 

i s the a f f i x of the point H on the un i t c i r c l e whose polar angle is <f> (see f i g u r e ) . 

But (1) is also equivalent to 

(z - a ) 2 = 2-£a sin cj>; 

hence 

| (s-a)21 = 2 s in <J> > o and arg ( s -a ) 2 = - + 

We can now wr i t e 

: ' - a = /2 s in <J> • c i s ( J + | ) , 

f"-a = - /2TTrT* • c i s ( J + | ) . 

( 2 ' ) 

( 2 " ) 

Since 

cos (|) = 2 s i n ( J + | ) c o s ( ^ + | ) 

and 

l + s i n * = 2 s i n 2 ( J + | ) ( 3 ) 
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we have 

i + a = cos 4> + -£(l+sin 40 

= 2 s i n ( H + |)cis(I + f). W 

Now, adding (2) and (4) and noting from (3) that 

2s1n(J + §) > /FsTrT?. 

we have 

s" + t = {2sin(^ + |) + /2TTF?}cis(^ + | ) ' 

s" + t = {2sin(^ + i) - /TsTn*)c1s (£ + £)• 

from which we see that s'+£ and z " +£ have the same argument TT/4 + <|>/2. 

If s', s" , and -•£ are the affixes of the points M', M", and B'9 respectively, 

it follows from our results so far that M1 and M" are both on the line B'H. Fur-

thermore, the numbers z%-a and s"-a , which are represented by the vectors HM1 and 
HM", respectively, have the same modulus /2 sin <f>. If i is the affix of the point 
B, it follows that triangle BM'M" is isosceles; hence the numbers z1-i and z"-i, 
which are represented by the vectors BM' and BM", respectively, have the same 

modulus. 

These results remain valid for $ - 0 and <p = IT, for then the roots zx and s" 

coincide. 

(b) Since 

|B&| = |ot—£| = /coŝ (J) + (sin <(> -l)z = /2(i-sin <f>), 

the common modulus of zx-i and zu-i is 

/|BTI|2 + [fifo'i2 = /2. 

It follows that M* and M1' describe, as 4> increases from 0 to TT, the arcs of the 

circle with center B and radius /2 which lie in the upper and lower half-planes, 

respectively. 

Also solved by W.J. BLUNDON, Memorial University of Newfoundland; JORDI DOU, 
Barcelona, Spain; HENRY E. FETTIS, Mountain View, California; J.T. GROENMAN, Arnhem, 
The Netherlands; F.G.B. MASKELL, Algonquin College, Ottawa; LEROY F. MEYERS, The 
Ohio State University; KESIRAJU SATYANARAYANA, Gaqan Mahal Colony, Hyderabad, 
India; and the proposer. 

s'« s'« ;'; 

711. T1982: 47"• Proposed by J.A. MoCallum^ Medicine Eat3 Alberta. 

Find all the solutions of the following alphametic (in which the last 
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word represents the sum of the preceding words), which I have worked on from time 

to time but never carried to completion: 

A ROSE IS A ROSF IS A ROSE SO THE WARS OF THE ROSES AROSE. 

I. Solution by Allan Wm, Johnson Jr.s Washington^ D.C. 

In less than five minutes of wall-clock time on a Model I Radio Shack TRS-80 

microcomputer, I found that this alphametic has exactly fifteen solutions in base 

ten, consisting of six pairs of solutions with H and I interchangeable, and three 

solutions in which they are not (because H = o and I cannot equal o). They are 

listed below. 

A ROSE IS A ROSE IS A ROSE SO THE WARS OF THE ROSES AROSE 

5 3620 92 5 3620 92 5 3620 26 870 4532 61 870 36202 53620 

5 3620 72 5 3620 72 5 3620 26 890 4532 61 890 36202 53620 

4 2580 98 4 2580 98 4 2580 85 630 7428 51 630 25808 42580 

4 2580 38 4 2580 38 4 2580 85 690 7428 51 690 25808 42580 

3 1560 76 3 1560 76 3 1560 65 840 9316 52 840 15606 31560 

3 1560 46 3 1560 46 3 1560 65 870 9316 52 870 15606 31560 

5 3780 48 5 3780 48 5 3780 87 910 2538 76 910 37808 53780 

5 3780 18 5 3780 18 5 3780 87 940 2538 76 940 37808 53780 

8 6340 54 8 6340 54 8 6340 43 920 1864 37 920 63404 86340 

8 6340 24 8 6340 24 8 6340 43 950 1864 37 950 63404 86340 

5 3861 76 5 3861 76 5 3861 68 401 2536 89 401 38616 53861 

9 7153 85 9 7153 85 9 7153 51 463 2975 10 463 71535 97153 

9 7153 65 9 7153 65 9 7153 51 483 2975 10 483 71535 97153 

7 5263 86 7 5263 86 7 5263 62 903 4756 21 903 52636 75263 

6 4127 82 6 4127 82 6 4127 21 307 9642 15 307 41272 64127 

II. Comment by Stanley Rabinowitz, Digital Equipment Covp.3 Merrimack^ New 

Hampshire. 

This is the longest alphametic that I have ever seen. The only alphametic 

I know that comes close is the memorable 

SUN 
LOSE 
UNTIE 

BOTTLE 
ELISION 

NINETEEN 
NONENTITY 
EBULLIENT 
INSOLUBLE 

NFBULOSITY 

with 
the 

remarkable 
unique 
solution 

741 
5672 
41982 
369952 
2587861 

18129221 
161219890 
234558219 
817654352 
1234567890 
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It was proposed by Steven R. Conrad in the December 1962 issue of Recreational 

Mathematics Magazine (issue 12, paqe 24). 

It would be interesting to know if readers know of any more mammoth al-

phametics in the literature. 

Also solved by MEIR FEDER, Haifa, Israel; and STANLEY RABINOWITZ, Digital 
Equipment Corp., Merrimack, New Hampshire. Partial solutions were submitted by 
CLAYTON W. DODGE, University of Maine at Orono; HANS HAVERMANN, Weston, Ontario; 
ROBERT S. JOHNSON, Montreal, Quebec; and HARRY L. NELSON, Livermore, California. 

Edi tor's commen I. 

It was Gertrude Stein (1874-1946) who wrote "a rose is a rose is a rose", 

right? Wrong. This is one of the famous misquotations of literary history. 

The correct quotation (from Sacred Emily) is "Rose is a rose is a rose is a rose", 

and the first "Rose" is the name of a person. William Safire recently wrote [13: 

"She [Gertrude Stein] did not write, 'A rose is a rose is a rose1; she wrote, 

•Rose is a rose is a rose is a rose,' and the addition of the first article changes 

the meaninglessness. But that is neither here nor there (Miss Stein also derogated 

Oakland, Calif., with 'There's no there there')." Safire backtracked somewhat in 

a later column [2]. It was entitled "Rose Were a Rose Were a Rose". (Here the 

first "Rose" refers to Rose Kennedy, the mother of Senator Edward M. Kennedy and 

the matriarch of the Kennedy clan.) 

We asked our first solver Johnson to solve our alphametic modified to include 

the correct Stein quotation. Again in less than five minutes of wall-clock time, 

he found that there are exactly eight solutions. These are given below. 

ROSE IS A ROSE IS A ROSE IS A ROSE SO THE WARS OF THE ROSES AROSE 

1580 48 3 1580 48 3 1580 48 3 1580 85 920 7318 56 920 15808 31580 

4981 28 7 4981 28 7 4981 28 7 4981 89 601 3748 95 601 49818 74981 

4382 78 6 4382 78 6 4382 78 6 4382 83 502 1648 39 502 43828 64382 

2875 97 4 2875 97 4 2875 97 4 2875 78 365 1427 80 365 28757 42875 

4275 97 6 4275 97 6 4275 97 6 4275 72 185 3647 20 185 42757 64275 

2376 57 4 2376 57 4 2376 57 4 2376 73 196 8427 30 196 23767 42376 

2839 73 4 2839 73 4 2839 73 4 2839 38 659 1423 80 659 28393 42839 

1759 85 3 1759 85 3 1759 85 3 1759 57 209 6315 74 209 17595 31759 

Of course, there are dissenting voices. In a book review [3], Gwendolyn 

MacEwen quotes the following from a book by Don Domanski [41: "A rose is not a 

rose, but always a war. War in an empty house." And Noel Perrin reports [5]: 

"In one of Isak Dinesen's stories, a Danish nobleman sits thinking about roses. 

A rose isn't a rose, he reflects—at least..." At least she didn't say "Rose 
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isn't a rose isn't a rose isn't a rose". Just as well: the Wars of the Roses 

would have to be refought, with Gertrude Stein and Isak Dinesen as the protag­

onists. 

REFERENCES 

1. The New York Times Magazine, December 19, 1982, p. 18. 

2. The New York Times Magazine, February 13, 1983, p. 16. 

3. Books in Canada, Vol. 11, No. 8 (October 1982), p. 24. 

4. Don Domanski, War in an Bnpty House, House of Anansi, 1982. 

5. The New York Times Book Review, May 2, 1982, p. 11. 
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712, C1982: 47] Proposed by Donald Aitken, Northern Alberta Institute of 

Technology, Edmonton 9 Alberta, 

Prove that AB = CD in the figure below. 

Solution de Bernard Baudiffier, College de Sherbrooke, Sherbrooke, Quebec. 

F 

et 

Les points E,F,G,H £tant tels que notes sur la figure, on a 

EF = EA + AF = AB + AC = 2AB + BC 

GH = DH + GD = CD + BD = 2CD + BC. 

Or la sym£trie de la figure donne EF = GH; done 

2AB + BC = 2CD + BC et AB = CD. 

Also solved by SAM BAETHGE, Southwest High School, San Antonio, Texas; PATRICIA 
A. BENEDICT, Cleveland Heights H.S., Cleveland Heights, Ohio; W.J. BLUNDON, Me­
morial University of Newfoundland; E.G. BUISSANT DES AMORIE, Amstelveen, The Ne­
therlands? CECILE Mo COHEN, Horace Mann School, Bronx, N.Y.; CLAYTON W. DODGE, 
University of Maine at Orono; JORDI DOU, Barcelona, Spain; MILTON P. EISNER, Mount 
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Vernon College, Washington, D.C.; HENRY E. FETTIS, Mountain View, California; JACK 
GARFUNKEL, Flushing, N.Y.; RICHARD A. GIBBS, Fort Lewis College, Durango, Colorado; 
J.T. GROENMAN, Arnhem, The Netherlands; W.C. IGIPS, Danbury, Connecticut; NICK 
MARTIN, student, Indiana University, Bloomington, Indiana; F.G.B. MASKELL, Algonquin 
College, Ottawa; STANLEY RABINOWITZ, Digital Equipment Corp., Merrimack, New Hamp­
shire; KESIRAJU SATYANARAYANA, Gagan Mahal Colony, Hyderabad, India; DIMITRIS 
VATHIS, Chalcis, Greece; KENNETH S. WILLIAMS, Carleton University, Ottawa; JOHN A. 
WINTERINK, Albuquerque Technical-Vocational Institute, Albuquerque, New Mexico; 
and the proposer. 

Editor's comment. 

Readers will learn a bit of French and not much mathematics from the above 

solution, which is equivalent to more than half of the solutions received. For 

mathematical journals as well as for human beings9 a gentle exercise once in a 

while is good for the circulation. 

713 i C1982: 481 Proposed jointly by Hartmut Maennel and Bernhard Leeb3 West 

German team members, 1981 International Mathematical Olympiad. 

Consider the series 

oo . 

iil Pis=1 Pj 

(a) Show that the series converges if {p^} is the sequence of primes. 

(b) Does it still converge if {p.} is a real sequence with each p. > 1? 

Solution by the proposers. 

We will prove that the answer to part (b) is affirmative, and part (a) will 

follow as a special case. 

The given series can be written 

7 — M . , where A. = JL(l - — ) . (l) 

Let {S } be the sequence of partial sums of the associated series 

CO 

-̂  + I ±-A. .. (2) 
Pi U2 ti 

We show by induction that 

S = 1 - A , n = 1,2,3,... . (3) 
n n 

We have S\ = ±/p\ = l - A\ and, assuming that (3) holds for some n, 
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S „ = S + — — A = 1 - A + —^— A = 1 - A 
n+1 n p . n n p . n n+1 

r n + l r n + l 

Now fo r a l l n we have 

0 < A < A < 1, SO S < S < 1 : 

n+1 n n n+1 

hence the series (2) converges. Finally, from 

—•it - < —»i4 . „ , £ = 2,3,4,..., 

it follows that (l) converges by comparison with (2). 

Editor's comment* 

Other would-be solvers probably gave up in despair after fruitlessly trying 

to prove the red herring part (a) by using deep theorems of Prime Number Theory, 

and then trying to find a counterexample for part (b). It ain't fair. 
s'c it s'; 

-ri i * 

7lH, [1982: 48] Pro-posed by Harry D. Ruderman, Hunter College, View York, N.Y. 

Prove or disprove that for every pair (p9q) of nonnegative integers there 

is a positive integer n such that 
(2n-p),i 

n\ (n+q)\ 

is an integer. (This problem was suggested by Problem 556 rigsi: 282] proposed 

by Paul Erdos.) 

Editor's comment. 

No solution was received for this problem, which therefore remains open. 
* * * 

7151 T1982: 48] Proposed by V.N. Murty, Pennsylvania State University, Capitol 

Campus. 

Let H e a real number, n an integer, and A,B,C the angles of a triangle. 
(a) Prove that 

8fc(sinnA + sinnB + sinnC) < 12k2 + 9. 

(b) Determine for which k equality is possible in (a), and deduce that 

|sinnA + sinnB + sinnC| < 3/3/2. 

I. Solution by Kesiraju Satyanarayanas Gagan Mahal Colony, Hyderabad, India. 

Let 

S = Sin) = sinnA + sinnB + sinnC. 
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Part (a) requires us to show that, for any real k9 

12k2 - QkS + 9 = 12{(&~§)2 + l(~S2)} > 0. (1) 

Now (1) certainly holds for all k if s2 < 27/4, or 

\s(n)\ < ̂ , (2) 

and we proceed to establish this inequality, which is that of part (b). 

It is easy to see that (2) holds if one summand of Sin) is zero, or if two 
summands have opposite signs, for in each case \s(n)\ < 2 < 3/3/2. We will show 

that it also holds if all summands have the same sign. We will need the following 

triple inequality, in which a,3,y ar^ the angles of an arbitrary triangle [1]: 

3/3" 
0 < sin 2a + sin 23 + sin 2y ^ sin a + sin 3 + siny < —r- 9 (3) 

where each equality holds just when the triangle is equilateral. 

When all summands of Sin) are nonzero and have the same sign, we have 

ink - ri-n + A', with 0 < A' < TT, 

nB = r27r + B', with 0 < B* < TT, (4) 

(rcC = r3Tr + C , with 0 < C < TT, 

where r\9r2,r3 are integers of the same parity (even if the summands are positive, 

odd if they are negative). In any case we have 

\s<n)\ = s* = sinA' + sinB' + s i n C . 

Summing the relations (4), we get 

nir = r-n + (A'+B'+C), 

where r = r\+r2+r39 and so 

0 < (tt-r)Tr = A' + B* + C < 3TT. 

Therefore A'+B'+C = TT or 2TT. In the first case, A',B',C' are the angles of a 

triangle, and sx < 3/3/2 follows from (3). In the second case, A'/2,B72,C72 are 

the angles of a triangle, and sl < 3/3/2 again follows from (3). This completes 

the proof of (2), and (l) is established. 

We have only left to determine for which k equality is possible in (1). It 

follows from (2) and (1) that equality is possible only when \s\ = 3/3/2 and 
ft = S/3 = ±/3/2. 

II. Solution by M.S. Klamkins University of Alberta (modified to use the 

notation of solution I when convenient). 
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Inequality (l) holds if k = o, so we assume that k * o. By the A.M.-G.M, 

inequality, we have 

12k2 + 9 ̂  3/3 
(5) 8[fc| ~ 2 ' 

with equality just when \k\ - /3/2. Assuming inequality (2) for the moment, we have 

IQ/VO! < 3/3 < 12k* f 9 

Hence ( l ) follows from the sharper inequality (2), and equality holds in ( l ) only 

when i t holds in (5), that i s , only when fc' = ±/3/2. We now establish a generaliza­

tion of (2). 

I f is known (see T21 or Crux 552 ["1981: 182]) that, for arbitrary real numbers 

x9y9z and integer m9 

x2 + y2 + z2 > (-l)m+ (2yzcosmh + 22#cosmB + 2xycosmC)9 (6) 

with equality i f and only i f 

sinraA ~ sinwB ~ sinwC* 

This is an easy consequence of the obvious inequality 

{x + (-lf(ycosmC + z COS/T?B)}2 + (y sinmC - z sinmB)2 > 0. (7) 

In particular, for m even, say m - 2n, we have cosmA= l - 2sin2nA, etc . , and 

(6) is equivalent to 

(x + y + z)2 > h(yz sin2nA + zx sin2nB + a?z/sin2rcC). (8) 

We further particularize by assuming that x9y9z are nonnegative and setting 

/x9/y9/z = p,q,r > o, respectively. Then we have, with cyclic sums, 

(p2+g2+r2)2 Zq2r2sir\2nl\ / ^ y $ j n n A \ 2
 r cn 

12 3 - K r~~ ' K } 

where the first inequality comes from (8) and the second from an application of 

the power mean inequalitya Finally, (9) yields 

\qrsinnA + rpsinnB + pq sinrcC| < -^-(p2 ^-q2-vr2 ) , (10) 

with equality if and only if 

/3 sinnA = sinnB = sinnC - ± — and p - q = r. (11) 

This is the promised generalization of (2), which is equivalent to (2) when 

p - q - r. D 

file:///qrsinnA
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An inequality sharper than do) is known for the special case n = l . I t is [3 ] 

X Y Z X Y Z 
csc^sinA + csc-s inB + csc^sinC <; c o t - + c o t - + c o t 2 9 

where XYZ and ABC are arbitrary tr iangles, with equality i f and only i f 

X + 2A = Y + 2B = Z + 2C = TT. 

From the obvious inequalities similar to (7), 

{x + (~l)m(y sinmC + z sinwB)}2 + (ycosmC -zcosmB)2 > 0 

and 

{x + i-l)m(y sinmC - z cosmB)}2 + {y COS777C - z sinwB)2 > 0, 

we obtain respectively 

x2 + y2 + z2 > (-l)m(2yz cosmA - 2zxsir\mB - 2xy sinmC) 

and 

x2 + y2 + z2 > (-if1 (2yz sinml\ - 2zxCOSmB + 2xysir)mC)9 

from which more inequalities analogous to (10) can be derived. 

We now come back to (2), which states that 

holds for every integer n and every triangle ABC, and investigate when the upper 

and lower bounds of sin) are attained, that is, according to (11), when 

A 
sinnA = sinnB = sinnC = ± — . (12) 

Since Sio) = 0, and sin) = b if and only if Si-n) - -b, it suffices to consider 

only positive values of n. The solutions of equations (12), which are all listed 

in [2], are: 

{nA , rcB, ttO = {PTT + T T / 3 , sir + TT/3 , tit + I T / 3 } , 

where r9s9t are nonnegative integers of the same parity such that r+s+t - n-i; and 

{nl\9 nB, nC} = {rir - TT/3, sir - TT/3, tir - 7r/3>, 

where r,s9t are positive integers of the same parity such that r+s+t = n+1. 

For all n, there are trianglesABC such that s(n) = 3/3/2. However, 

S(n) - -3/3/2 is possible if and only if n > 4. For n = 1 and n = 2, this is 
obvious from (3). For n = 3, we have 
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-2 < S(Z) < ~^. (13) 

The left inequality is strict since the lower bound is attained only for the de­

generate triangle with angles o, TT/2, IT/2. A proof of (13) was asked in a problem 

set by the author for the 1981 U.S.A. Mathematical Olympiad. (For a solution, see 

the booklet Math Olympiads for 1981, obtainable by writing to Dr. Walter E. Mientka 

ri98l: 1401.) For n = 4, there is a unique solution for each bound. For n = 5,6,7, 

the solutions are unique only for the lower bound. For example, for n = 5 solu­

tions for the upper bound are obtained from {r9s9t} = {4,0,0} and {2,2,0}, but the 

lower bound can be attained only from {r9s9t} = {2,2,2}. For n > 7, there are 

multiple solutions for both bounds. 

Also solved by J.T. GROENMAN, Arnhem, The Netherlands; and the proposer. 
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716, [1982: 48] Proposed by G.P. Henderson^ Campbelloroft3 Ontario. 

A student has been introduced to common logarithms and is wondering 

how their values can be calculated. He decides to obtain their binary represen­

tations (perhaps to see how a computer would do it). Help him by finding a simple 

algorithm to generate numbers b e {0,1} such that 

00 

loaio# = I b '2~n , 1 < x < 10. 
n=l 

Solution by Stanley Rabinowitzs Digital Equipment Corp., Merrimack^ New 

Hampshire, 

We may assume from analysis that, for e\/ery x such that 1 < x < 10, a binary 

representation 
00 

u = loq10tf = I &n '2*n E .bib2b3... (1) 
n~l 

exists and is unique. From this follows 
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so b\ = o or l according as x2 < 10 or x2 > 10. Furthermore, having determined 

the first bit (binary digit) b\ , we can write 

2u - bi = loq10te2/10 M = ,b2b3bh..., with 1 < x2/!^1 < 10. (2) 

and &2 can be determined from (2) just as b\ was determined from (l); and the 
remaining bits b3,bi+ ,£5,..., as far as desired, can be determined successively by 

repeating the process. Consequently, we have proved that the following simple 

algorithm works: 

Algorithm BCL (Binary Common Logarithm Algorithm) 

Given X between l and 10, find the bits of logi0X. 

Step l. [SQUARE] Y^-X 2. 

Step 2. [GET NEXT BIT] Next bit in binary representation is B «- o if 

Y < 10, 1 if Y > 10. 

Step 3. [REDUCE] X + Y/10B. Go to Step 1. D 

I compared this algorithm against the algorithm actually used by the Common 

Run Time System of the VMS operating system on a VAX-ll/780 computer and I found 

that, while algorithm BCL at first seems very fast, in fact it requires one mul­

tiplication for each bit desired; this is relatively slow. The algorithm my com­

puter used was considerably faster. 

Also solved by HAYO AHLBURG, Benidorm, Alicante, Spain; YVES GALIPEAU, College 
de Sherbrooke, Sherbrooke, Quebec; M.S. KLAMKIN, University of Alberta; KENNETH S. 
WILLIAMS, Carleton University, Ottawa; and the proposer. 

Editor 's comment. 

Ahlburg's solution ended with the following, presumably built up from bits and 

pieces: 

log107 = .84509 80400 14256 83071 22162 58596 63619 3*4835 72396 32396 .. . . 

All solvers except one (about whom more later) ended up with essentially the same 

algorithm. So this algorithm is without a doubt the best answer to our problem, 

in that it is the simplest; but it is not the fastest, as noted by our featured 
solver. No solver was willing or able to disclose any of the faster algorithms 

used in big computers. 

The purpose of this problem seems to be to describe how a computer could 

find the bits of logio^* which He (it no longer seems adequate for a modern com­

puter) would then convert into decimal logio# for the benefit of lowly mortals. 

Our exceptional solver had an even simpler algorithm: he found the bits of log10^ 
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from the decimal loq10#, which he assumed to be known. It all seems pretty point­

less: if decimal log10# is already known, who (except maybe a computer) cares 

about the bits? 

717 • T1982: 48] Proposed Jointly by J.T. Groenman3 Avnhem3 The Netherlands; 

and D.J. Smeenk3 Zaltbommel3 The Netherlands. 

Let P be any point in the plane of (but not on a side of) a triangle ABC. 

If H , H, , H are the orthocenters of triangles PBC, PCA, PAB, respectively, prove 

that [ABC] = CH H,H ], where the brackets denote the area of a triangle. 
a D c v 

Solution by George Tsintsifas3 Thessaloniki3 Greece. 

The desired result is a consequence of the following lemma, which will be 

proved below. 

LWMA. If ABCDEF is a hexagon (not necessarily convex) such that AB || DE, 

BC || EF, and CD || FA, then [ACE] = CBDF], where signed areas are used. 

For in the given problem AH BH CH, is a hexagon with 

AH || H C (i PB), H B || CH, (i PA), BH || H,A (1 PC); 

hence, from the lemma, [ABC] = [H H H, ] = [H H,H ]. 
cab a b c 

Proof of the lemma. Let BE n CF = R, CF n DA = S, and AD n BE = T (make a 

figure!)„ We have 

BC || EF = > [CER] = CBRF], 

CD || FA => [CSA] = TFSD], 

AB || DE = > TATE] = [DTB3. 

If we sum these three equalities and then add [TSR] to each side, we obtain 

[ACE] = [BDFD. 

Also solved by O. BOTTEMA, Delft, The Netherlands; JORDI DOU, Barcelona, Spain? 
DAN PEDOE, University of Minnesota; KESIRAJU SATYANARAYANA, Gagan Mahal Colony, 
Hyderabad, India; DAN SOKOLOWSKY, California State University at Los Angeles; and 
the proposersa A comment was received from M.S. KLAMKIN, University of Alberta. 

Editor's comment. 

The problem is not new. The proposers were perfectly aware of this, but they 
submitted the problem anyway with their own solution, as they had every right to do, 
because they (and the editor) felt that it was interesting and not well known. But 
they loyally gave their source. They found the problem (as well as the lemma used 
in our solution) proposed by S. Fourniere (from Reims, France) in the April 1915 
issue of the Journal de Mathematiques elementaires. 

Klamkin found the problem in Casey's Trigonometry, page 146, where it is 
credited to J. Neuberg. Since the book was published in the 1880s, the priority 
for the problem goes to Neuberg. In an earlier article ri981: 102-105, esp. p. 104]9 
Klamkin had given two more recent (1960 and 1961) references for the lemma. 


