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EDITORIAL
As I was reviewing my last editorial, I thought of how mathematics is taught
across the globe. Surely, math is math everywhere, but students’ and teachers’
approaches to it vary culture to culture. I have experienced this first-hand: I
moved to Canada when I was 18 having gone through the school system and even
one year of university in Belarus (yes, I was born in the USSR). For the sake of
strengthening my English, I decided to start university from scratch in Canada.
And now that I work in mathematical education, I often compare my two freshman
years. Belorussian first-year calculus was Canadian third-year analysis: rigorous,
technical, precise. We could find limits only using ε and δ, we dealt with functions
purely analytically and we memorized a lot of proofs. In Canada, my experience
was the complete opposite: all we did was direct computations, graph functions
and generalize patterns. The former was theoretical, the latter — practical. Which
one is better?

Clearly, you need both. My theoretical experience prepared me for doing math
thoroughly, with great attention to detail and with forethought; my practical ex-
perience built up my intuition for math and taught me to always look for and make
connections between various representations of the same mathematical object. But
habits are persistent and we tend to stick to what we are more comfortable with.
So my Canadian students resist the theoretical side of math calling it “dry” and
“irrelevant”, while my Belorussian types often object to graphing and describing
math in words since it is “watered-down” and “not mathy”. You can’t please
everyone.

At Crux, it is also clear that people (both amongst our subscribers and within
the Editorial Board) have different preferred methods and tend to be faithful
to their favourite approaches. Whatever your taste, you will find something to
your liking on the pages of our journal. And if not, then clearly we are missing
your submissions! So send them along to crux-psol@cms.math.ca for problem
proposals and to crux-articles@cms.math.ca for articles.

Kseniya Garaschuk

Copyright c© Canadian Mathematical Society, 2015
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THE CONTEST CORNER
No. 32

Robert Dawson

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’un
concours mathématique de niveau secondaire ou de premier cycle universitaire, ou en
ont été inspirés. Nous invitons les lecteurs à présenter leurs solutions, commentaires et
généralisations pour n’importe quel problème. S’il vous plâıt vous référer aux règles de
soumission à l’endos de la couverture ou en ligne.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au rédacteur au plus tard le 1 avril 2016 ; toutefois, les solutions reçues après cette date
seront aussi examinées jusqu’au moment de la publication.

La rédaction souhaite remercier André Ladouceur, Ottawa, ON, d’avoir traduit les
problèmes.

CC156. Décrire et réaliser un croquis précis de la région qui représente l’en-
semble

{(x, y, z) : |x|+ |y| 6 1, |y|+ |z| 6 1, |z|+ |x| 6 1}.

CC157. Étant donné une matrice 5× 5 dont chacun des nombres est un 0 ou
un 1, démontrer qu’il doit exister une sous-matrice 2×2 (c’est-à-dire l’intersection
de la réunion de deux rangées avec la réunion de deux colonnes) dont tous les
nombres sont soit 0, soit 1.

CC158. On considère un point mobile A sur la partie positive de l’axe des
abscisses, un point mobile B sur la partie positive de l’axe des ordonnées et l’origine
O de manière que le triangle ABO ait toujours une aire de 4. Déterminer l’équation
d’une courbe, définie dans le premier quadrant, qui est tangente à chacun des
segments AB.

CC159. La disposition de huit tuiles carrées, ci-dessous à gauche, peut être
divisée en deux groupes congruents de quatre tuiles, comme sur la droite. (On
remarque qu’un groupe est le reflet de l’autre dans un miroir, ce qui est permis.)

� �

� � � � → � � � �

� � � � � �

Déterminer une façon de diviser la disposition suivante de 100 tuiles en deux
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groupes congruents de 50 tuiles, ou démontrer qu’il est impossible de le réaliser.

�

� � �

� � � � �

...
...

...

� � � · · · � � � (19 tuiles dans la 10e rangée)

CC160. Déterminer tous les triplets (f, g, h) de fonctions continues à valeurs
réelles définies sur R telles pour tout nombre réel x,

f(g(x)) = g(h(x)) = h(f(x)) = x.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CC156. Describe and accurately sketch the region

{(x, y, z) : |x|+ |y| 6 1, |y|+ |z| 6 1, |z|+ |x| 6 1}.

CC157. Show that if a 5× 5 matrix is filled with zeros and ones, there must
always be a 2×2 submatrix (that is, the intersection of the union of two rows with
the union of two columns) consisting entirely of zeros or entirely of ones.

CC158. Suppose movable points A, B lie on the positive x-axis and y-axis,
respectively, in such a way that 4ABO, where O is the origin, always has area 4.
Find an equation for a curve in the first quadrant which is tangent to each of the
line segments AB.

CC159. The following pattern of eight square tiles can be divided into two
congruent sets of four tiles as shown. (Note that one set is the mirror image of
the other — this is legal.)

� �

� � � � → � � � �

� � � � � �
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Find a way to divide the following pattern of 100 tiles into two congruent sets of
fifty tiles, or show it cannot be done.

�

� � �

� � � � �

...
...

...

� � � · · · � � � (19 tiles in the 10th row)

CC160. Find all triples of continuous functions f, g, h : R 7→ R such that,
for all x ∈ R,

f(g(x)) = g(h(x)) = h(f(x)) = x .

Three really magic squares

Having received his yearly salary in silver coins, the royal Mathematician arranged
the coins into vertical stacks and placed them on a 3 × 3 square so that the
numbers representing the amount of coins in each stack formed a magic square,
that is a square such that the sum of the numbers along every row, column and
diagonal of the square is the same. Some stacks came out being quite tall, but
none were higher than 300 coins tall.

The King liked the arrangement but lamented over the fact that all the numbers
came out being composite. “If your majesty gives me 9 more coins, I will add
one to each stack; the magic square property will be preserved but all the new
numbers will be prime”, replied the Mathematician. The King nearly agreed, but
was interrupted by the Joker, who took away one coin from each stack and the
new numbers all became prime (and the square, of course, remained a magic
square).

What was the original magic square composed by the Mathematician?

From Kvant, 1981 (9), p.31.

Crux Mathematicorum, Vol. 41(2), February 2015



THE CONTEST CORNER /51

CONTEST CORNER
SOLUTIONS

Les énoncés des problèmes dans cette section apparaissent initialement dans 2014: 40(2),
p. 51–52.

CC106. At each summit of a regular tetrahedron of side length 3, we cut off
a pyramid such that the cut-off surface makes an equilateral triangle. The four
equilateral triangles thus obtained have all different dimensions. What is the total
length of the edges of the solid thus truncated? Provide a proof.

Originally problem 29 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2008.

We received two incomplete submissions to this problem, neither of which ade-
quately proved that the four tetrahedral corners that are removed from the original
tetrahedron must be regular. We present an editor’s solution.

Let A,B,C, and D be the vertices of the given tetrahedron, and let P,Q, and R
be the points on DA,DB, and DC, respectively, such that PQR is the equilateral
triangle formed by cutting off the pyramid containing the vertex D. Suppose that
the polyhedron has been labeled so that DP ≥ DQ ≥ DR. We will first prove
that these segments must, in fact, be equal. Compare triangles DPR and DQR.
We have RP = RQ and the angles at D are both 60◦. Because we assume that
RD is no larger than either DP or DQ, the angles at P and Q must be acute.
From the sine law (applied to both triangles) we have

sin∠DQR = DR
sin 60◦

RQ
= DR

sin 60◦

RP
= sin∠DPR,

from which we conclude that the two triangles are congruent, whence DQ = DP .
Focusing now on the 60◦ angle PDQ, we note that the length of the segment PQ
increases monotonically as the lengths DP = DQ increase, so there will be exactly
one position of P and Q for which PQ = QR (= RP ), namely where the lengths
DP,DQ,DR are all equal. Because the angles at D are all 60◦, the three faces at
D are equilateral triangles, and the tetrahedron DPQR is therefore regular.

Returning to the problem, because all edges of a regular tetrahedron have the same
length, DP +DQ+DR = PQ+QR +RP and we conclude that the truncation
at the vertex D does not change the sum of the edge lengths. Of course, the same
can be said about the truncation at the other vertices, so the total length of the
edges of the truncated tetrahedron must equal 18.

CC107. In a right triangle ABC with right angle at B and BC = 1, we place
D on side AC such that AD = AB = 1

2 . What is the length of DC?

Copyright c© Canadian Mathematical Society, 2015
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Originally problem 6 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2002.

There were eight solution submitted for this question, all essentially the same.

By the Pythagorean Theorem we have

AC =
√
BC2 +AB2 =

…
1 +

1

4
=

√
5

2

and

DC = AC −AD =

√
5

2
− 1

2
=

√
5− 1

2
.

CC108. In an orthonormal system, the line with equation y = 5x crosses
the parabola with equation y = x2 in point A. The perpendicular to OA at O
intersects the parabola at B. What is the area of triangle AOB?

Originally problem 20 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2009.

We received six correct solutions, and one incorrect solution. We present the
solution of Titu Zvonaru.

It is easy to deduce that A(5, 25). The slope of OB is −1/5. Solving the system
y = − 1

5x, y = x2 we obtain B(− 1
5 ,

1
25 ).

It follows that OA =
√

52 + 252 = 5
√

26, OB =
»

1
52 + 1

252 =
√
26
25 . Hence the

area of the triangle is AOB = OA·OB
2 = 26

10 = 13
5 .

CC109. Let E be the set of reals x for which the two sides of the following
equality are defined:

cot 8x− cot 27x =
sin kx

sin 8x sin 27x
.

If this equality holds for all the elements of E, what is the value of k?

Originally problem 21 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2009.

We received seven submitted solutions to this problem, one of which was incorrect
and five were incomplete. We present the only correct solution by Paolo Perfetti
modified by the editor.

Note first that E = {x ∈ R|x 6= mπ
8 and x 6= mπ

27 for any m ∈ Z. For x ∈ E, the
given equality is equivalent to

sin 8x · sin 27x(cot 8x− cot 27x) = sin kx. (1)

We shall prove that the only value of k for which (1) holds for all x ∈ E is k = 19.

Crux Mathematicorum, Vol. 41(2), February 2015
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Since

sin 8x · sin 27x(cot 8x− cot 27x) = sin 27x cos 8x− cos 27x sin 8x

= sin (27x− 8x) = sin 19x,

k = 19 satisfies (1).

Next, suppose (1) holds for all x ∈ E and some k ∈ Z with k 6= 19.

If k = −19, then from (1) we have 2 sin 19x = 0 for all x ∈ E, which is false (for
example, if x = π

38 , then x ∈ E, but sin 19x = sin π
2 = 1 6= 0). Hence k 6= −19.

From (1), we also have

2 sin

Å
19− k

2
x

ã
cos

Å
19 + k

2
x

ã
= 0. (2)

Since sin
(
19−k

2 x
)

= 0 if and only if 19−k
2 x = mπ or x = 2mπ

19−k and cos
(
19+k

2 x
)

= 0

if and only if 19+k
2 x = (m + 1

2 )π or x = (2m+1)π
19+k for some m ∈ Z, there must be

some x ∈ E that does not satisfy (2). (To be more precise, the set of all x such

that x = 2mπ
19−k or x = (2m+1)π

19+k for some m ∈ Z is countable while E is clearly
uncountable.) This is a contradiction and our proof is complete.

CC110. What is the number of real solutions to the equation:

|1 + x− |x− |1− x||| = | − x− |x− 1||.

Originally problem 26 from Demi-finale du Concours Maxi de Mathématiques de
Belgique 2009.

We have received four correct solutions and one incorrect submission. We present
the solution by Henry Ricardo.

We compute the left-hand side (LHS) and the right-hand side (RHS) on three
intervals that cover the real number line.

Case 1. Suppose that 0 ≤ x ≤ 1. Then

RHS = | − x− (1− x)| = | − x− 1 + x| = 1.

When x ∈ [−, 12 ],

|1 + x− |x− (1− x)|| = |1 + x− (1− 2x)| = 3x

and when x ∈ ( 1
2 , 1],

|1 + x− |2x− 1|| = |1 + x− (2x− 1)| = |2− x| = 2− x

so that

LHS =

ß
3x if 0 ≤ x ≤ 1

2 ,
2− x if 1

2 < x ≤ 1.

Copyright c© Canadian Mathematical Society, 2015
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Thus LHS = RHS when either 3x = 1 or 2 − x = 1, which implies x = 1
3 and

x = 1 for x ∈ [0, 1].

Case 2. If x > 1, we have

LHS = |1 + x− |x− (x− 1)|| = |1 + x− 1| = x

and
RHS = | − x− (x− 1)| = | − 2x+ 1| = 2x− 1.

But x > 1 implies that (2x− 1)−x = x− 1 > 0, so RHS > LHS and there are no
solutions to the equation in the interval (1,∞).

Case 3. Finally, for x ∈ (−∞, 0), RHS = 1 and LHS = |3x| = −3x, so LHS =
RHS if and only if −3x = 1, which implies x = − 1

3 .

Thus the only solutions of the given equation are x = −1

3
, 1,

1

3
.

Math Quotes

The solution of problems is one of the lowest forms of mathematical research.
Yet, its educational value cannot be overestimated. It is the ladder by which
the mind ascends into higher fields of original research and investigation. Many
dormant minds have been aroused into activity through the mastery of a single
problem.

Benjamin Franklin Finkel.

Crux Mathematicorum, Vol. 41(2), February 2015
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THE OLYMPIAD CORNER
No. 330

Carmen Bruni

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale. Nous invitons les lecteurs à présenter
leurs solutions, commentaires et généralisations pour n’importe quel problème. S’il vous
plâıt vous référer aux règles de soumission à l’endos de la couverture ou en ligne.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au rédacteur au plus tard le 1 avril 2016 ; toutefois, les solutions reçues après cette date
seront aussi examinées jusqu’au moment de la publication.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à l’Uni-
versité de Saint-Boniface, d’avoir traduit les problèmes.

OC216. Soit p = n2 + 1 un nombre premier. Déterminer toutes les solutions
entières à l’équation suivante :

x2 − (n2 + 1)y2 = n2.

OC217. Soit G le centröıde du triangle rectangle ABC où ∠BCA = 90◦. Soit
P le point sur le rayon AG tel que ∠CPA = ∠CAB, et soit Q le point sur le rayon
BG tel que ∠CQB = ∠ABC. Démontrer que les cercles circonscrits de AQG et
BPG se rencontrent à un point sur le côté AB.

OC218. Déterminer toute fonction f : N→ N satisfaisant

f(mn) = lcm(m,n) · gcd(f(m), f(n))

pour tous les entiers positifs m et n.

OC219. Pour m et n des entiers positifs donnés, démontrer qu’il existe un
entier c tel que les nombres cm et cn ont le même nombre d’occurences de chaque
chiffre non nul, lorsqu’ils sont exprimés en base 10.

OC220. Soit A1A2...A8 un octagone convexe où tous les côtés sont de même
longueur et où les côtés opposés sont parallèles. Pour chaque i = 1, ..., 8, posons
Bi le point d’intersection des segments AiAi+4 et Ai−1Ai+1, où Aj+8 = Aj et
Bj+8 = Bj pour tout j. Fournir un nombre i, parmi 1, 2, 3, et 4, satisfaisant

AiAi+4

BiBi+4
6

3

2
.

Copyright c© Canadian Mathematical Society, 2015
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OC216. Let p = n2 + 1 be a given prime number. Find the set of integer
solutions to the following equation :

x2 − (n2 + 1)y2 = n2.

OC217. Let G be the centroid of a right-angled triangle ABC with ∠BCA =
90◦. Let P be the point on ray AG such that ∠CPA = ∠CAB, and let Q be
the point on ray BG such that ∠CQB = ∠ABC. Prove that the circumcircles of
triangles AQG and BPG meet at a point on side AB.

OC218. Find all functions f : N→ N satisfying

f(mn) = lcm(m,n) · gcd(f(m), f(n))

for all positive integers m,n.

OC219. Given positive integers m and n, prove that there is a positive integer
c such that the numbers cm and cn have the same number of occurrences of each
non-zero digit when written in base ten.

OC220. Let A1A2...A8 be a convex octagon such that all of its sides are equal
and its opposite sides are parallel. For each i = 1, ..., 8, define Bi as the intersection
between segments AiAi+4 and Ai−1Ai+1, where Aj+8 = Aj and Bj+8 = Bj for all
j. Show that some number i, amongst 1, 2, 3, and 4 satisfies

AiAi+4

BiBi+4
6

3

2
.
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OLYMPIAD SOLUTIONS
Les énoncés des problèmes dans cette section apparaissent initialement dans 2014 : 40(2),
p. 56–57.

OC156. Let ABCD be a tetrahedron. Prove that vertex D, center of ins-
phere and centroid of ABCD are collinear if and only if the areas of triangles
ABD,BCD,CAD are equal.

Originally question 2 from day 1 of the Poland Math Olympiad.

We received four correct solutions to this problem. We present the solution by
Michel Bataille.

Let I and r be the center and the radius of the insphere. Let V(·) and A(·) denote
volume and area, respectively.

Since V(IBCD) = 1
3 · r · A(BCD) (and similarly for triangles CDA, DAB and

ABC), we can use

(A(BCD) : A(CDA) : A(DAB) : A(ABC))

instead of
V(IBCD) : V(ICDA) : V(IDAB) : V(IABC))

for the barycentric coordinates of I relative to (A,B,C,D). It follows that

σI = (A(BCD))A + (A(CDA))B + (A(DAB))C + (A(ABC))D

where σ is the sum of the areas of the faces of ABCD and the bold face letters
represent the coordinates of the points. In particular, we have

σ
−→
DI = (A(BCD))

−−→
DA+ (A(CDA))

−−→
DB + (A(DAB))

−−→
DC. (1)

Let G be the centroid of ABCD. Then,

4G = A + B + C + D,

from which we deduce
4
−−→
DG =

−−→
DA+

−−→
DB +

−−→
DC. (2)

Now, D, I,G are collinear if and only if

σ
−→
DI = λ(4

−−→
DG) (3)

for some real number λ. Since
−−→
DA,

−−→
DB,

−−→
DC are not coplanar, (1) and (2) show

that (3) occurs if and only if

A(BCD) = A(CDA) = A(DAB).

Copyright c© Canadian Mathematical Society, 2015
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OC157. Find all functions f : R→ R such that

f(f(x)2 + f(y)) = xf(x) + y,∀x, y ∈ R .

Originally question 4 from Kyrgyzstan National Olympiad.

We received three correct solutions and one incorrect submission. We present the
solution by Henry Ricardo.

Letting x = 0 in the given equation, we have

f(f(0)2 + f(y)) = y, ∀y ∈ R (1)

so f is onto. Thus there exists a ∈ R such that f(a) = 0. Taking x = a in the
original equation gives us

f(f(y)) = y, ∀y ∈ R, (2)

which shows that f is one to one since f(x) = f(y) implies f(f(x)) = f(f(y)), or
by (2), x = y.

Now replace x by f(x) in the original equation to obtain

f(x2 + f(y)) = f(x)f(f(x)) + y = xf(x) + y = f(f(x)2 + f(y))

Usnig the fact that f is one to one, we have

x2 + f(y) = f(x)2 + f(y).

Therefore x2 = f(x)2 and f(x) = ±x.

To eliminate the possibility that f(x) = x for some x and f(y) = −y for some
y 6= x, suppose that xy 6= 0 and f(x) = x, f(y) = −y. The original equation gives
us f(x2 − y) = x2 + y, but we know that f(x) = ±x and so ±(x2 − y) = x2 + y
implies either x = 0 or y = 0. Now it is clear that f(x) = x for all x ∈ R
and f(x) = −x for all x ∈ R satisfy the original equation and are the only such
functions.

OC158. Prove that a finite simple planar graph has an orientation so that
every vertex has out-degree at most 3.

Originally question 4 from day 1 of the Romania TST.

We received no solutions to this problem.

OC159. Let p be an odd prime number. Prove that there exists a natural
number x such that x and 4x are both primitive roots modulo p.

Originally question 3 from the 2012 Iran National Math Olympiad Third Round.

We received one correct solution and one incorrect submission. We present the
solution by Oliver Geupel.

Crux Mathematicorum, Vol. 41(2), February 2015
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The existence of a primitive root modulo p is a well-known fact. Suppose that a
is a primitive root modulo p. Then there is a positive integer r such that 2 ≡ ar

(mod p) and therefore 4 ≡ a2r (mod p). Let p1, p2, . . . , p` denote the distinct prime
divisors of p−1. For 1 6 k 6 `, let sk be an integer such that sk 6≡ 0 (mod pk) and
sk 6≡ −2r (mod pk). Find via the Chinese Remainder Theorem, a natural number
m such that

m ≡ sk (mod pk) , 1 6 k 6 `.

Then, neither m nor m+ 2r is divisible by any pk. Hence, each of the numbers m
and m+ 2r is coprime with p− 1.

We obtain
p− 1 - m, 2m, 3m, . . . , (p− 2)m,

p− 1 - m+ 2r, 2(m+ 2r), 3(m+ 2r), . . . , (p− 2)(m+ 2r).

Thus,
am, a2m, a3m, . . . , a(p−2)m 6≡ 1 (mod p) ,

am+2r, a2(m+2r), a3(m+2r), . . . , a(p−2)(m+2r) 6≡ 1 (mod p) ,

since a is a primitive root modulo the prime p. We have obtained that am and
am+2r ≡ 4am (mod p) are primitive roots modulo p. Therefore, x = am has the
required property.

OC160. The incircle of triangle ABC, is tangent to sides BC,CA and AB
at D,E respectively F . Let T and S be the reflection of F with respect to B
respectively the reflection of E with respect to C. Prove that the incenter of
triangle AST is inside or on the incircle of triangle ABC.

Originally question 3 from day 2 of the Iran National Math Olympiad Second
Round.

No solutions were received.

Copyright c© Canadian Mathematical Society, 2015



60/ FROM THE ARCHIVES : EXTENDING A TETRAHEDRON

Extending a tetrahedron
I. Sharygin

One of the most beautiful tools that can be used when solving geometrical problems
consists of replacing the geometric figure in question with another one, a more
convenient one in some sense. For example, if the problem involves a triangle
with a median, often it is helpful to use this triangle to construct a parallelogram
therefore extending the median to turn it into the parallelogram’s diagonal. In
this article, we will consider several problems involving a triangular pyramid, the
so-called tetrahedron, that can be solved by extending the tetrahedron to another
solid, often a parallelepiped.

The first way to extend the tetrahedron is presented in Figure 1. Here, AA1BD
is the given tetrahedron. The plane of each of the faces DCC1D1, CBB1C1 and
A1B1C1D1 of the parallelepiped passes through one vertex of the tetrahedron and
is parallel to the edge of it opposite of that vertex. This way, one of the corners of
the tetrahedron becomes one of the corners of the parallelepiped.

Figure 1: Extending the tetrahedron, method 1.

Problem 1 Suppose the tetrahedron AA1BD is a right-angle triangular pyramid,
that is, the edges AA1, AB and AD are mutually perpendicular.

a) Prove that vertex A of the tetrahedron, the point M of intersection of the
medians of the face A1BD and the centre of the circumsphere are collinear.
(Note : this problem appeared on the entrance exam to the Mechanical Ma-
thematical Department of the Moscow State University.)

b) Find the radius of the sphere circumscribed around this pyramid.

We extend tetrahedron AA1BD to a parallelepiped (a right angle one) as in Fi-
gure 1. Then the sphere circumscribed around the tetrahedron is also circumscribed
around the parallelepiped. The radius of this sphere is then equal to half the length
of the diagonal of the parallelepiped, that is it is equal to 1

2

√
AA2

1 +AB2 +AD2,
which answers part b) of the problem.
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To prove part a), consider rectangle AA1C1C. Centre O of the sphere lies on the
diagonal AC1. Median A1O1 of the triangle A1BD intersects AC1 at a point M .
Since triangles A1C1M and O1AM are similar, we get :

A1M

O1M
=
A1C1

O1A
= 2,

meaning that M is the point of intersection of the medians of the triangle A1BD
and we are done.

Another common way to extend a tetrahedron to a parallelepiped is as follows : for
every edge of the tetrahedron, construct a plane containing this edge and parallel
to the opposite edge (Figure 2, left). This way, the edges of the tetrahedron become
the diagonals of the faces of the parallelepiped. A little practical hint : it is easier
to sketch this construction if you start with the parallelepiped first.

Figure 2: Extending the tetrahedron, method 2.

Problem 2 Find the radius of the sphere that touches all the edges of a regular
tetrahedron with edge length a.

As one can easily see from Figure 2, a parallelepiped constructed in this way around
a regular tetrahedron is a cube with edge length a/

√
2. The sphere touching the

edges of the tetrahedron is the sphere inscribed in the cube. The answer is therefore
a

2
√
2
.

So the first method of extending a tetrahedron is useful when you are given all
angles at one of the vertices (especially if those angles are all right angles) ; the
second method is helpful in problems involving the opposite edges of the tetrahe-
dron.

Problem 3 Two opposite edges of the tetrahedron have length a, two other oppo-
site edges have length b and the two remaining opposite edges have length c. Find
the distance between the centre of the tetrahedron’s insphere and the centre of the
sphere that touches one face of the tetrahedron and the extension of all the others.

Consider such a tetrahedronABCD and the parallelepipedAMCKNDLB construc-
ted as in Figure 2 on the right. Since each edge of the tetrahedron equals its op-
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posite edge, all the faces of the parallelepiped are rectangles and hence the whole
solid is rectangular.

The centre of the sphere inscribed in the tetrahedron ABCD coincides with the
intersection point of all the parallelepiped’s diagonals (prove this fact). Without
loss of generality, assume that the external sphere touches the face DCB and the
extension of the other faces. Then the centre of this sphere lies at the vertex L of
the parallelepiped. To see this, consider the pyramid B′LCD equal to the pyramid
BLCD, where B′L = LB : the points A,D,B′ and C lie in one plane. Therefore,
L is equidistant from the face DCB and the extension of ACD. Similarly, one can
show that L is equidistant from the planes of DCB and ACB as well as DCB
and ADB.

Therefore, the distance in question is equal to half the length of the diagonal of
the parallelepiped. Let x, y, z denote the lengths of the edges of the parallelepiped.
By Pythagoras’ Theorem, we get a system of three equations :

x2 + y2 = a2,

x2 + z2 = b2,

y2 + z2 = c2.

Adding them all up, we find that

AL

2
=

1

2

√
x2 + y2 + z2 =

1

2

 
a2 + b2 + c2

2
.

Problem 4 Let A1B1CD be a tetrahedron ; let Π be the (unique) plane parallel to
the lines A1B1 and CD and equidistant from them. Let S be the area of the cross
section of A1B1CD cut by Π and suppose the distance between the opposite edges
is h. Find the volume of the tetrahedron.

Suppose ABCDA1B1C1D1 is the parallelepiped as in Figure 3.

Figure 3: Cross section of the tetrahedron.

The volume of the tetrahedron A1BC1D is equal to the volume of the parallele-
piped minus the volumes of the four tetrahedra, one on each face of the initial
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tetrahedron and each with the volume equal to one sixth of the volume of the
parallelepiped (why ?). Therefore, Vtetrahedron = Vparalellepiped/3.

Let A1C1 and BD be the two opposite edges and let KLMN be the plane in-
tersecting the parallelepiped in midpoints of the vertical edges AA1, BB1, CC1

and DD1. Then the vertices of the cross section defined in the problem are the
midpoints of the edges of the parallelogram KLMN . Therefore,

Area(KLMN) = 2S = Area(ABCD).

Then

Vtetrahedron =
1

3
Vparalellepiped =

2

3
Sh.

(Using problem 4, one can easily prove Simpson’s formula used to compute volumes
of certain solids.)

In conclusion, let us show one example where it is more convenient to extend the
tetrahedron to the triangular prism.

Problem 5 Suppose that in a tetrahedron, areas of two faces are equal to S1 and
S2 and the angle between them is α. Suppose further that the areas of the two other
faces are equal to Q1 and Q2 and the angle between them is β. Show that

S2
1 + S2

2 − 2S1S2 cosα = Q2
1 +Q2

2 − 2Q1Q2 cosβ.

Let us first prove that if the area of one lateral face of a prism is S and the areas of
two other lateral faces are equal to S1 and S2 with the angle between them equal
to α, then

S2
1 + S2

2 − 2S1S2 cosα = S2.

Figure 4: Extending the tetrahedron to a prism.

Indeed, let the plane ABC be perpendicular to the lateral faces of the prism and
let ∠BAC = α (Figure 4, left). By Law of Cosines applied to triangle ABC, we
have

BC2 = AB2 +AC2 − 2 ·AB ·AC · cosα.
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All that is left to do now is to multiply each side by l2, where l is the length of
the lateral edge of the prism.

Now, let us come back to the main statement of Problem 5. Given the tetrahedron
ABCD, let S4ABD = S1, S4ADC = S2, S4ABC = Q1, S4DBC = Q2, angle at
the edge AD be equal to α and angle at the edge BC be equal to β. Consider
the triangular prism with base ABC with AD as one of the lateral edges (Figure
4, right). Let S be the area of the parallelogram BB1C1C, then by the formula
proved above we have :

4S2
1 + 4S2

2 − 8S1S2 cosα = S2.

Note that S = AD · BC · sin γ, where γ is the angle between edges BC and AD.
Similarly, considering the other triangular prism with base ACD and lateral edge
BC, we get :

4Q2
1 + 4Q2

2 − 8Q1Q2 cosβ = S2.

Combining the above, we are done.

Exercises.

1. Prove that the sum of squares of the edge lengths of a tetrahedron is equal
to four times the sum of squares of distances between the midpoints of its
opposite edges.

2. Given a tetrahedron ABCD, show that the directions of opposite edges AD
and BC are perpendicular if and only if AB2 +DC2 = AC2 +DB2.

3. The lengths of two opposite edges of a tetrahedron are equal to a, the other
two b and the last two c. Find a) the volume of this tetrahedron ; b) the
radius of the circumsphere.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This article originally appeared in Russian in Kvant, 1976 (1), p. 60–65. It has
been translated and adapted with permission.
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Graphs and Edge Colouring
David A. Pike

Let’s begin with a familiar scenario : suppose that we need to schedule the matches
of a round-robin tournament involving n teams, so that once the tournament has
concluded each team will have played against each other team exactly once. In
total there would be

(
n
2

)
games. Potentially they could be scheduled sequentially,

but that could make for a very long and drawn out tournament. In the interest
of completing the event as quickly as possible, we instead want to have several
teams competing simultaneously. The question that now arises is this : given that
no team can play more than one game at a time, how few time slots are needed
in order to schedule the whole tournament ?

This particular question was answered long ago by modelling it with graph theory.
In the 1890s Édouard Lucas [5] published a solution, for which he gave credit as
follows :

Parmi les diverses méthodes qui nous ont été indiquées, nous expose-
rons, de préférence, les solutions simples et ingénieuses de M. Walecki,
professeur de Mathématiques spéciales au lycée Condorcet.

At this stage it would be good to know exactly what a graph is. Formally, a graph
G consists of a set V of elements called vertices, accompanied by a set E of edges,
which themselves are pairs of vertices. Any graph can easily be represented in
the form of a drawing. For instance, in Figure 1 are two drawings of the graph
having V = {a, b, c, d, e} and E =

{
{a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {d, e}

}
. Each

vertex is depicted as a circular node, and each edge is illustrated by drawing a line
between its two vertices.

Figure 1: Two different drawings of a graph

Note that there is no specified location for the vertices or edges of a graph. Mo-
reover, the edges do not need to be drawn as straight lines, but are free to have
bends and curves. In practice the vertices may represent real entities (such as
sports teams which do have a geographical placement) and the edges might also
represent connections with physical form (such as railway lines between cities),
but what is most important here is that the graph captures the existence of a
relationship between pairs of vertices (such as the need for their corresponding
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teams to play against each other).

For our scenario of a round-robin tournament, we will want to consider a graph
with n vertices such that each pair of vertices is joined by an edge. Such a graph
is called a complete graph and is denoted by Kn. Figure 2 illustrates the graph
K7, with the vertices named 0 to 6. As can be seen in this example, we also allow
edges to be drawn so that their lines intersect.

Figure 2: The complete graph K7

If we have seven teams that must each play against each other during a tournament,
then each edge of K7 corresponds to an individual game that has to be played.
But we still need to find a way to schedule the games, preferably into as few time
slots as possible. Since each edge of K7 represents a distinct game that must be
played, then the games within a single time slot correspond to a set of edges, no
two of which share a vertex. So to find a schedule, we need only find a way to
partition the edges of K7 into sets of this form.

Exercise 1 Find a schedule for these 21 games.

Having just found a schedule for the games that the seven teams must play, we
now have to consider whether there might be a better schedule.

Question 1 Is there a schedule that uses fewer time slots ?

If not, then how can you be sure that yours is indeed the best ? To determine
just how few time slots there are in an optimal schedule, we need to do some
mathematical thinking.

Observe that each of the seven teams has to play six games, so right away we know
that the number of time slots that are in any valid schedule has to be at least six.
Were you able to find a schedule that only used six time slots ?

Question 2 Can you find a schedule with six time slots ? If not, then can you
prove that there is no schedule with only six time slots ?
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As it happens, there is no way to schedule the tournament with seven teams so
that all of the games fit into only six time slots. To convince yourself that this is
the case, note that the teams that are playing games within a single time slot are
playing in pairs. So with seven teams, at most six of them can actually be playing
at any given time, which in turn means that at most three games can take place
at a time. In total, there are 21 games that must be played, and with at most
three that can be scheduled per time slot, we need at least seven time slots for the
tournament. With this argument in mind, we can now conclude that any schedule
that uses only seven time slots must in fact be an optimal solution.

Let’s move away from the example of n = 7 now and consider what might happen
when n is even. Is it still the case that n− 1 time slots is impossible ?

Exercise 2 Use K4 and K6 to find optimal schedules for n = 4 and n = 6.

You should find that for these two small examples it is actually possible to find
schedules with as few as 3 and 5 time slots, respectively. To try to see a general
pattern we will now consider n = 8. With teams named 0 to 6 and ∞, Figure 3
illustrates how to form four pairs of teams for the first time slot of the tournament,
and then how to form four pairs for the second time slot. Looking at this figure, a
general approach ought to become apparent : rotate the edges clockwise for each
subsequent time slot. To be a bit more technical, for each edge {u, v} of one time
slot, for the next time slot use the edge {u+ 1, v+ 1} where we treat ∞+ 1 as ∞
and (n− 2) + 1 as 0.

Figure 3: Team pairings for two different time slots in K8

So for even n, an optimal solution is to use this technique with the edges {0,∞} and
{1, n− 2}, {2, n− 3}, . . . , {n−22 , n2 } for the initial time slot. The resulting schedule
will have a total of (n− 1) time slots for the tournament.

For odd n, however, recall that each time slot has to have a team that sits out. We
can find a schedule that uses n time slots by introducing a phantom team called
∞, building an optimal schedule for (n+ 1) teams (note that n+ 1 is even), and
then assigning byes to teams whenever they are paired with the phantom team.
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So when n is odd, we know that a schedule with n time slots can be achieved,
although for n 6= 7 we have not yet proved that n− 1 time slots are insufficient.

At this point hopefully you are beginning to wonder what any of this has to do
with colouring, although perhaps you’ve already discovered that each time slot can
be associated with a distinct colour. If we colour the edges of a graph so that two
edges that meet at a common vertex are not allowed to share the same colour, then
it is possible to use the colouring to form a schedule of pairings. Alternatively, if we
do not actually have colours to work with (such as this black-and-white article),
we can emulate the idea of colours with dashed lines, etc., similar to what we have
done for the graph shown in Figure 4. The solid black edges {a, c} and {b, d} could
be used to indicate two games to be played during the first day of a competition
(with team e having a bye), the short-dashed edge {c, d} provides for just one
game on the second day, the dotted edges {a, b} and {d, e} tell us which games are
to take place on the third day, and finally the long-dashed edge {a, d} corresponds
to the sole game on the fourth day of the competition. Note that in this example
the competition is not a round-robin tournament (since not every pair of teams
will play against each other).

Figure 4: Example of an edge colouring

An edge colouring for which edges of the same colour never meet at a common
vertex is called a proper edge colouring. An easy way to obtain a proper edge
colouring is to give each edge a distinct colour, but this would result in no games
taking place at the same time. As before, our goal is to determine how few time
slots are needed. With our new terminology, given a graph G we want to know
the smallest number of colours for which a proper edge colouring exists ; this value
is called the chromatic index of the graph and is denoted by χ′(G). An obvious
lower bound on the chromatic index is that χ′(G) > ∆(G), where ∆(G) denotes
the number of edges at any vertex with the most edges (for the graph in Figure 4,
∆(G) is 4 thanks to vertex d belonging to four edges).

For complete graphs, we have already seen that χ′(K2`) = 2`−1 and χ′(K2`+1) 6
2`+ 1. So already we have examples of graphs, some of which have χ′(G) = ∆(G)
and some for which χ′(G) might be as high as ∆(G) + 1. As it turns out, provided
that each pair of vertices is joined by either one edge or none, then these are the
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only two possible values for χ′(G), as was proved by Vadim Vizing in the 1960s
(this result is proved in most graph theory textbooks, such as [5]).

Vizing’s Theorem If for each pair of vertices of a graph G there is at most one
edge between them, then χ′(G) ∈ {∆(G),∆(G) + 1}.

Given that there are only two possible values for the chromatic index, it has become
common practice to say that graphs for which χ′(G) = ∆(G) are Class 1 and that
graphs for which χ′(G) = ∆(G) + 1 are Class 2. Examples of Class 1 graphs
include complete graphs with an even number of vertices, as well as all bipartite
graphs ; a graph is called bipartite if its vertex set V can be partitioned into two
subsets A and B so that every edge of the graph has one of its two vertices in A
and the other in B. Bipartite graphs have numerous applications ; indeed, whole
books have been written just on bipartite graphs (see [1] for one of them). Class 2
graphs include odd-length cycles (e.g., the graph having V = {1, 2, . . . , 2`+1} and
E =

{
{1, 2}, {2, 3}, . . . , {2`, 2`+ 1}, {1, 2`+ 1}

}
.

Questions regarding how to identify which class a particular graph might be are
natural to ask. As an example, in Figure 5 is the famous Petersen graph.

Exercise 3 Determine whether the Petersen graph is Class 1 or Class 2.

Figure 5: The Petersen graph

For some graphs, there is an easy way to determine their class. To give a definition,

we will say that a graph G is overfull if |E| strictly exceeds ∆(G)b |V |2 c, where the
notation |S| denotes the cardinality of the set S and bxc denotes the greatest
integer not exceeding the real number x (so for example bπc = 3, b7c = 7 and
b−πc = −4).

Amanda Chetwynd and Anthony Hilton pioneered some of the research on overfull
graphs [2]. It is easy to prove that any graph that is overfull must be Class 2. By
way of contradiction, suppose that there exists an overfull graph G that happens
to be Class 1. Since it is Class 1, χ′(G) = ∆(G). Moreover, each colour can be used
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on at most b |V |2 c edges, for if a colour occurred on any more edges then at least two
edges of that colour would have to meet at a common vertex. With ∆(G) colours,

each occurring on at most b |V |2 c edges, it follows that |E| 6 ∆(G)b |V |2 c, in violation
of the graph being overfull. Thus we have obtained the desired contradiction, from
which we conclude that the graph cannot be Class 1.

Having previously determined that χ′(Kn) 6 ∆(G) + 1 when n is odd was not
itself a proof that complete graphs with an odd number of vertices are Class 2.
However, by verifying that any complete graph with an odd number of vertices
is overfull, we can now confirm that K2`+1 is Class 2. The Petersen graph is also
Class 2.

It is not too hard to deduce that if a graph is overfull then it necessarily must
have an odd number of vertices. This condition is not sufficient though, for there
do exist Class 1 graphs having an odd number of vertices (simply refer to Figure 4
to see an example).

The examples that we have seen so far have not been very difficult. However,
determining whether a given graph is Class 1 versus Class 2 is generally not an
easy problem. Indeed, Ian Holyer proved in 1981 that it is so hard that it is NP-
complete [3]. Nevertheless, motivated both by scientific curiosity as well as the
applications that exist for edge colourings, this continues to be an active area of
research whereby people try to find faster colouring algorithms and also try to
establish that certain types of graphs are Class 1 versus Class 2.
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PROBLEMS
Nous invitons les lecteurs à présenter leurs solutions, commentaires et généralisations
pour n’importe quel problème présenté dans cette section. De plus, nous les encourageons
à soumettre des propositions de problèmes. S’il vous plâıt vous référer aux règles de
soumission à l’endos de la couverture ou en ligne.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au rédacteur au plus tard le 1 avril 2016 ; toutefois, les solutions reçues après cette date
seront aussi examinées jusqu’au moment de la publication.

La rédaction souhaite remercier Rolland Gaudet, professeur titulaire à la retraite à l’Uni-
versité de Saint-Boniface, d’avoir traduit les problèmes.

3960. Proposé par George Apostolopoulos. Correction.

Soient a, b, c des nombres réels non négatifs tels que a+ b+ c = 4. Démontrer que

a2b

3a2 + b2 + 4ac
+

b2c

3b2 + c2 + 4ab
+

c2a

3c2 + a2 + 4bc
6

1

2
.

4011. Proposé par Abdilkadir Altinas.

Dans un triangle non équilatéral ABC, soient H l’orthocentre de ABC et J l’or-
thocentre du triangle orthique DEF de ABC (c’est-à-dire le triangle formé par
les altitudes de ABC). Si ∠BAC = 60◦, montrer que AJ ⊥ HJ .

4012. Proposé par Leonard Giugiuc.

Soit n un entier tel que n > 3. Considérer des nombres réels ak, 1 6 k 6 n tels
que

a1 > a2 > . . . > an−1 > 1 > an > 0 et
n∑
k=1

ak = n.

Démontrer que

(n− 2)(n+ 1)

2
6

∑
16i<j6n

aiaj 6
n(n− 1)

2
.

4013. Proposé par Mehmet Şahin.

Soient a, b et c les côtés du triangle ABC, D le pied de l’altitude émanant de A et
E le mi point de BC. Poser θ = ∠DAE et supposer que ∠ACB = 2θ. Démontrer
que les côtés du triangle vérifient

(a− b)2 = 2c2 − b2.
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4014. Proposé par Mihaela Berinedanu.

Soit n un nombre naturel et soient x, y et z des nombres réels positifs tels que
x+ y + z + nxyz = n+ 3. Démontrer que

(1 +
y

x
+ nyz)(1 +

z

y
+ nzx)(1 +

x

z
+ nxy) > (n+ 2)3.

4015. Proposé par Michel Bataille.

Déterminer tous les nombres réels a tels que

a cosx+ (1− a) cos
x

3
>

sinx

x

pour tout x non nul dans l’intervalle (− 3π
2 ,

3π
2 ).

4016. Proposé par George Apostolopoulos.

Soient x, y et z des nombres réels positifs. Déterminer la valeur maximale de
l’expression

x+ 2y

2x+ 3y + z
+

y + 2z

2y + 3z + x
+

z + 2x

2z + 3x+ y
.

4017. Proposé par Michel Bataille.

Soit P un point sur le cercle inscrit γ du triangle ABC. Les perpendiculaires vers
BC,CA etAB, passant par P , rencontrent γ aux points U , V etW respectivement.
Démontrer qu’un des nombres PU · BC,PV · CA,PW · AB est égal à la somme
des deux autres.

4018. Proposé par Ovidiu Furdui.

Soit

In =

∫ 1

0

· · ·
∫ 1

0

ln(x1x2 · · ·xn) ln(1− x1x2 · · ·xn)dx1dx2 · · · dxn,

où n > 1 est entier. Démontrer que l’intégrale converge et déterminer sa valeur.

4019. Proposé par George Apostolopoulos.

Un triangle avec longueurs de côtés a, b et c possède un périmètre de longueur 3.
Démontrer que

a3 + b3 + c3 + a4 + b4 + c4 > 2(a2b2 + b2c2 + c2a2).
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4020. Proposé par Leonard Giugiuc et Daniel Sitaru.

Soit ABC un triangle. Supposer que les bissectrices internes de A,B et C inter-
sectent les côtés BC,CA et AB en D,E et F respectivement. Le cercle inscrit de
∆ABC touche les côtés BC,CA et AB en M,N et P respectivement. Démontrer
que [MNP ] 6 [DEF ], où [·] dénote la surface du triangle en question.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3960. Proposed by George Apostolopoulos. Correction.

Let a, b, c be nonnegative real numbers such that a+ b+ c = 4. Prove that

a2b

3a2 + b2 + 4ac
+

b2c

3b2 + c2 + 4ab
+

c2a

3c2 + a2 + 4bc
6

1

2
.

4011. Proposed by Abdilkadir Altinas.

In non-equilateral triangle ABC, let H be the orthocenter of ABC and J be the
orthocenter of the orthic triangle DEF of ABC (that is the triangle formed by
the feet of the altitudes of ABC). If ∠BAC = 60◦, show that AJ ⊥ HJ .

4012. Proposed by Leonard Giugiuc.

Let n be an integer with n > 3. Consider real numbers ak, 1 6 k 6 n such that

a1 > a2 > . . . > an−1 > 1 > an > 0 and
n∑
k=1

ak = n.

Prove that
(n− 2)(n+ 1)

2
6

∑
16i<j6n

aiaj 6
n(n− 1)

2
.

4013. Proposed by Mehmet Şahin.

Let a, b, c be the sides of triangle ABC, D be the foot of the altitude from A and
E be the midpoint of BC. Define θ = ∠DAE and suppose that ∠ACB = 2θ.
Prove that the sides of the triangle satisfy

(a− b)2 = 2c2 − b2.

4014. Proposed by Mihaela Berinedanu.

Let n be a natural number and let x, y and z be positive real numbers such that
x+ y + z + nxyz = n+ 3. Prove that

(1 +
y

x
+ nyz)(1 +

z

y
+ nzx)(1 +

x

z
+ nxy) > (n+ 2)3

and determine when equality holds.
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4015. Proposed by Michel Bataille.

Find all real numbers a such that

a cosx+ (1− a) cos
x

3
>

sinx

x

for every nonzero x of the interval (− 3π
2 ,

3π
2 ).

4016. Proposed by George Apostolopoulos.

Let x, y, z be positive real numbers. Find the maximal value of the expression

x+ 2y

2x+ 3y + z
+

y + 2z

2y + 3z + x
+

z + 2x

2z + 3x+ y
.

4017. Proposed by Michel Bataille.

Let P be a point of the incircle γ of a triangle ABC. The perpendiculars to
BC,CA and AB through P meet γ again at U, V and W , respectively. Prove that
one of the numbers PU ·BC,PV · CA,PW ·AB is the sum of the other two.

4018. Proposed by Ovidiu Furdui.

Let

In =

∫ 1

0

· · ·
∫ 1

0

ln(x1x2 · · ·xn) ln(1− x1x2 · · ·xn)dx1dx2 · · · dxn,

where n > 1 is an integer. Prove that this integral converges and find its value.

4019. Proposed by George Apostolopoulos.

A triangle with side lengths a, b, c has perimeter 3. Prove that

a3 + b3 + c3 + a4 + b4 + c4 > 2(a2b2 + b2c2 + c2a2).

4020. Proposed by Leonard Giugiuc and Daniel Sitaru.

Let ABC be a triangle and let the internal bisectors from A,B and C intersect
the sides BC,CA and AB in D,E and F , respectively. The incircle of ∆ABC
touches the sides BC,CA and AB in M,N , and P , respectively. Prove that
[MNP ] 6 [DEF ], where [·] denotes the area of the specified triangle.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2014: 40(2), p. 73–76,
unless otherwise specified.

An asterisk (?) after a number indicates that a problem was proposed without a solution.

2832?. Proposed by Walther Janous. [2003: 176; 2004: 184]

Let n be a positive integer, and let

a(n) =

∣∣∣∣∣∣
3n∑
j=0

(−2)j
ÇÇ

6n+ 2− j
j + 1

å
+

Ç
6n+ 1− j

j

åå∣∣∣∣∣∣ .
Prove that
(a) a(n) = 3 if and only if n = 1, and
(b) the sequence {a(n)}∞n=1 is strictly increasing.

We give the solution to part (b) by C. R. Pranesachar.

We shall prove that the statement is false. In fact, there exist infinitely many
positive integers n such that a(n) > a(n+ 1).

Let

b(n) =
∑
j>0

(−2)j
ÇÇ

n+ 1− j
j + 1

å
+

Ç
n− j
j

åå
, n > 0.

Also let c(n) = b(6n+ 1). Then a(n) = |c(n)|, as the full range of j is used. Since∑
j>0

(
n−j
j

)
is the coefficient of xn in the series

1 + x(1 + x) + x2(1 + x)2 + · · ·+ xn(1 + x)n + · · · = 1

1− x− x2

we see that
∑
j>0(−2)j

(
n−j
j

)
is the coefficient of xn in the series

1 + x(1− 2x) + x2(1− 2x)2 + · · ·+ xn(1− 2x)n + · · · = 1

1− x+ 2x2
.

Now,∑
j>0

(−2)j
Ç
n+ 1− j
j + 1

å
=
∑
j>1

(−2)j−1
Ç
n+ 2− j

j

å
=

1

2
− 1

2

∑
j>0

(−2)j
Ç
n+ 2− j

j

å
,

so this sum is the coefficient of xn+2 in

1

2(1− x)
− 1

2(1− x+ 2x2)
.
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Thus b(n) is the coefficient of xn+2 in

x2

1− x+ 2x2
+

1

2(1− x)
− 1

2(1− x+ 2x2)
=

1

2(1− x)
+

2x2 − 1

2(1− x+ 2x2)

= 1 +
1

2(1− x)
+

x− 2

2(1− x+ 2x2)
.

Hence b(n) = 1
2 +A0 α

n +B0 β
n, where α and β are the roots of λ2 − λ+ 2 = 0,

and A0, B0 are two fixed numbers. We have

α =
1 + i

√
7

2
, β =

1− i
√

7

2
.

Using the initial values b(0) = 2 and b(1) = 3, we get easily that

A0 =
3− i

√
7

4
, B0 =

3 + i
√

7

4
.

Since a(n) = |c(n)|, we compute c(n). In fact

c(n) = b(6n+ 1) =
1

2
+

Ç
3− i

√
7

4

å
α6n+1 +

Ç
3 + i

√
7

4

å
β6n+1

=
1

2
+

Ç
5 + i

√
7

4

å
α6n +

Ç
5− i

√
7

4

å
β6n.

Since

α6 =

Ç
1 + i

√
7

2

å6

=
9 + i

√
7

2
and β6 =

9− i
√

7

2
,

we have

c(n) =
1

2
+

Ç
5 + i

√
7

4

åÇ
9 + i

√
7

2

ån
+

Ç
5− i

√
7

4

åÇ
9− i

√
7

2

ån
, n > 1.

If we set

A =
5 + i

√
7

4
, B =

5− i
√

7

4
,

then

A2 =
9 + 5i

√
7

8
, B2 =

9− 5i
√

7

8
.

Hence

b(6n+ 1) =
1

2
+A2(4A2)n +B(4B2)n =

1

2
+ 4n(A2n+1 +B2n+1).

Now we may take A =
√

2eiθ, B =
√

2e−iθ, where θ = arccos
Ä

5
4
√
2

ä
is acute. So

c(n) =
1

2
+ 8n(2

√
2) cos(2n+ 1)θ.
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Hence

a(n) = |c(n)| =
∣∣∣1
2

+ 8n(2
√

2) cos(2n+ 1)θ
∣∣∣, n > 1.

Now we exploit the properties of θ. Surprisingly, θ has some nice ‘solution-friendly’
properties that are precisely needed. Firstly,

cos 2θ = 2 cos2 θ = 2 cos2 θ − 1 = 2

Å
25

32

ã
− 1 =

9

16
.

From this we infer that θ cannot be a rational multiple of π (the proof is left as
an exercise for the reader). Therefore, the set {cos(2n + 1)θ : n ∈ N} is dense
in [−1, 1]. The next property of θ that we use is as follows: since 5

4
√
2
> 3

2 , we

have cos θ > cos 30◦, and so θ < 30◦. Hence, if φ ∈ (θ, 30◦), an interval of positive
length, we may write φ = θ + τ for some suitable τ ∈ (0, 30◦ − θ).

Further

cosφ− 8 cos(φ+ 2θ) = cos(θ + τ)− 8 cos(3θ + τ)

= cos τ (cos θ − 8 sin 3θ) + sin τ (8 sin 3θ − sin θ)

= sin τ (8 sin 3θ − sin θ) > 0.

(In fact, one has sin 3θ > sin θ since 0 < θ < 3θ < 90◦.)

Thus cosφ > 8 cos(φ+ 3θ). Now the set {cos(2n+ 1)θ : n ∈ N} being dense in the
interval (cos 30◦, cos θ), we have that for some m ∈ N, we get (2m+1)θ = 2kπ+φ,
where k ∈ N and φ ∈ (θ, 30◦). Hence

cos(2m+ 1)θ = cosφ > 8 cos(φ+ 2θ) = 8 cos(2m+ 3)θ > 0.

This is sufficient to infer that c(m) > c(m+ 1) > 0, and hence a(m) > a(m+ 1).
Thus a(n) > a(n+ 1), for infinitely many n as (2n+ 1)θ visits (θ, 30◦) (mod 2π)
infinitely often. Also one has θ = 27◦ 55′ 8′′ (approximately) and so we can as
well extend the interval (θ, 30◦) to (θ, 34◦) safely, as 34◦+ 2θ is still less than 90◦.

Note that we have proved the result only for positive values of c(n). It may happen
that |c(n)| > |c(n+ 1)| for some negative values of c(n) also. Values of n less than
100 for which this happens are given below. These values can be obtained by
giving the above numerical value for θ and relevant values of n.

c(13) = 1305410163123, c(14) = 286249224103;

c(42) ≈ −2.078035580 · 1038, c(43) ≈ −1.327909464 · 1038;

c(55) ≈ −1.079614797 · 1050, c(56) ≈ 1.974401435 · 1049;

c(84) ≈ 1.723273540 · 1076, c(85) ≈ 4.481080748 · 1075;

c(97) ≈ 8.905486681 · 1087, c(98) ≈ −5.427940879 · 1087.

Although (b) is false, (a) may be still true and it is believed by this solver that
(a) is in fact true.
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Editor’s comments. The approach above might provide a solution to part (a).
Starting with the expression for c(n) derived above, express everything as a rational
expression in α: writing x = α6n+3, manipulate c(n) = ±3 into monic quadratic
expressions and get a value of x as a complex number. A simple recurrence for
the real part of powers of α, in reduced form, should then yield the desired result.
The reader should work out the details to see if there is an unforeseen pitfall.

3911. Proposed by Paul Bracken.

Let x0 ∈ (0, 1− 1/a], where a > 1, and define the sequence xn = xn−1 − x2n−1 for
n ∈ N. Prove that xn satisfies the inequalities

x0
anx0 + 1

< xn <
x0

nx0 + 1
, n ∈ N.

We have received eight correct solutions. We present the solution by Arkady Alt
slightly modified by the editor.

Note first that since x0 ∈ (0, 1) and x1 − x0 = −x20 < 0, we have x1 < x0.
Furthermore, since x0 > x20, we have that x1 = x0 − x20 > 0. Hence, 0 < x1 < 1.
By similar argument and induction, it is easily shown that the sequence (xn) is
strictly decreasing and xn ∈ (0, 1) for all n ∈ N.

Since
1

xk
=

1

xk−1 − x2k−1
=

1

xk(1− xk−1)
=

1

xk−1
+

1

1− xk−1
,

we have
1

xk
− 1

xk−1
=

1

1− xk−1
for all k ∈ N. Hence for all n ∈ N we have

1

xn
− 1

x0
=

n∑
k=1

Å
1

xk
− 1

xk−1

ã
=

n∑
k=1

1

1− xk−1

6
n∑
k=1

1

1− x0
=

n

1− x0
<

n

1− (1− 1
a )

= an,

from which we get
1

xn
<

1

x0
+ an =

anx0 + 1

x0
,

so
x0

anx0 + 1
< xn. (1)

Using (1), we get

1

xn
− 1

x0
=

n∑
k=1

1

1− xk−1
>

n∑
k=1

1

1− xn
>

n∑
k=1

1

1− x0

anx0+1

=
n

1− x0

anx0+1

=
n(anx0 + 1)

anx0 + 1− x0
> n,
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so
1

xn
>

1

x0
+ n =

nx0 + 1

x0
.

Hence,

xn <
x0

nx0 + 1
. (2)

From (1) and (2), the proof is complete.

3912. Proposed by Michel Bataille.

Let ABC be a scalene triangle with no right angle and H as its orthocenter. If
A1, B1 and C1 are the midpoints of BC, CA and AB respectively, prove that the
orthocenters of HAA1, HBB1 and HCC1 are collinear.

We received seven submissions, five of which were correct and two incomplete. We
present a composite of the solutions by Šefket Arslanagić and by the proposer.

Define the point A′ to be the reflection ofH in A1. ThenHBA′C is a parallelogram
(because its diagonals bisect one another), which implies that A′C ⊥ AC (because
BH is parallel to A′C and perpendicular to AC). Similarly, A′B||CH so that
A′B ⊥ AB; consequently, AA′ is a diameter of the circumcircle Γ of ∆ABC.

Let K be the orthogonal projection of A onto the line A1H (note that K 6= A
because ∠BAC 6= 90◦). This point K is on the circle γ1 with diameter AA1 and,
from the preceding remark (which implies that A′, A1,K,H are collinear), is also
on Γ. It follows that AK is the radical axis of the circles Γ and γ1.

Let γ denote the Euler (or nine-point) circle of ∆ABC (which passes through the
feet of the altitudes and the midpoints of the sides). Since ∠BAC 6= 90◦, we
have γ 6= γ1. In addition, both γ1 and γ pass through A1 and the orthogonal
projection D of A onto BC (which are distinct points because AB 6= AC). Thus,
the line BC is the radical axis of γ1 and γ. Now, the orthocentre P of ∆AHH1,
which is the point of intersection of AK and BC, is the radical center of the
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circles Γ, γ, γ1. Thus, P is on the radical axis of the circles Γ and γ. The same is
true of the orthocentres of triangles HBB1 and HCC1. The desired result follows
immediately.

But we can deduce yet more: these three orthocentres lie on the orthic axis of
∆ABC (which, consequently, must coincide with the radical axis of Γ, γ), as we
now show. If E and F are the feet of the altitudes from the vertices B and C of
∆ABC, then they lie on the circle whose diameter is AH, and that circle, call it
γ2, also contains K (because AK ⊥ HK). Thus the radical axis of γ2 and γ1 must
be AK, while the radical axis of γ2 and the Euler circle γ is EF . Putting these
lines together with the radical axis BC of circles γ and γ1, we see that the radical
centre of these three circles must be the common point of AK,BC, and EF , which
we know to be P (the intersection of BC and AK). By analogous arguments, the
orthocentres of triangles HBB1 and HCC1 must likewise be the intersections of
the sides DE and DF of the orthic triangle DEF with the corresponding sides
AB and AC of the initial triangle. Of course, a triangle and its orthic triangle are
perspective from the orthocentre, whence they must be perspective from a line,
namely the orthic axis. We have just seen that the corresponding sides of the two
triangles intersect in the orthocentres of HAA1, HBB1, HCC1, which completes
a second proof that these three points are collinear.

Editor’s comments. Both incomplete submissions provided neat arguments to
show that the three orthocentres satisfy one of the conditions required for the
converse of Menelaus’s theorem, but (as was pointed out in the editorial comments
following problem 3885 [2014 : 399]) a second condition must be satisfied: zero or
two of the orthocentres must lie on the sides of ∆ABC (while one or three lie on
the extensions of those sides).

3913. Proposed by Ovidiu Furdui.

Calculate ∫ ∞
0

∫ ∞
0

dxdy

(ex + ey)2
.

We received ten correct solutions and two incorrect submissions. We present the
solution by Madhav Modak.

Denote the repeated integral by I. Then by change of variables we have

I =

∫ ∞
0

∫ ∞
0

e−2ye−2x

(e−x + e−y)2
dxdy

=

∫ ∞
0

∫ e−y

1+e−y

−e−2y

t2
(t− e−y)dtdy
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where e−x + e−y = t, and −e−xdx = dt. Proceeding with the integral, we have

I =

∫ ∞
0

∫ 1+e−y

e−y

e−2y
(1

t
− e−y

t2

)
dtdy

=

∫ ∞
0

e−2y
[

log t+
e−y

t

]1+e−y

e−y
dy

=

∫ ∞
0

e−2y
[

log
1 + e−y

e−y
+ e−y

( 1

1 + e−y
− 1

e−y

)]
dy

=

∫ ∞
0

e−2y
[

log(1 + e−y) + y
]
dy +

∫ ∞
0

( e−3y

1 + e−y
− e−2y

)
dy

=
[e−2y
−2

log(1 + e−y)
]∞
0
−
∫ ∞
0

e−2y

−2
· −e

−y

1 + e−y
dy +

∫ ∞
0

ye−2ydy

+

∫ ∞
0

( e−3y

1 + e−y
− e−2y

)
dy

=
1

2
log 2− 1

2

∫ ∞
0

e−3y

1 + e−y
dy +

[
y
e−2y

−2

]∞
0
−
∫ ∞
0

e−2y

−2
dy

+

∫ ∞
0

e−3y

1 + e−y
dy −

∫ ∞
0

e−2ydy

=
1

2
log 2 +

1

2

∫ ∞
0

e−3y

1 + e−y
dy − 1

2

∫ ∞
0

e−2ydy.

Letting 1 + e−y = w, and −e−ydy = dw, we have

=
1

2
log 2 +

1

2

∫ 1

2

−(w − 1)2

w
dw − 1

2

[e−2y
−2

]∞
0

=
1

2
log 2 +

1

2

∫ 2

1

(w − 2 +
1

w
)dw − 1

4

=
1

2
log 2 +

1

2

(3

2
− 2 + log 2

)
− 1

4
,

so that

I = log 2− 1

2
.

3914. Proposed by George Apostolopoulos; generalized by the Editorial Board.

Let ABC be a triangle with circumradius R, inradius r and semiperimeter s, such
that s = kr. Prove that

2k

3
√

3
<
R

r
<
k2 − 3

12
.

We received 13 correct solutions. We present a hybrid of several solutions that
efficiently applied formulae (implicitly and explicitly) from O. Bottema et al., Ge-
ometric Inequalities, Wolters-Noordhoff, Groningen, 1969.
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As noted in most of the solutions, we assume that the triangle is not equilateral,
as both of the inequalities become equations if the given triangle is equilateral.

Using k = s/r, the left-hand inequality is equivalent to 2s < 3R
√

3, which is
inequality 5.3 from Bottema et al.

The right-hand inequality is equivalent to

3r(4R+ r) < s2,

which is given both in 5.5 and 5.6 of Bottema et al.

3915. Proposed by Marcel Chiriţă.

Let M and N be points on the sides AB and AC, respectively, of triangle ABC,
and define O = BN∩CM . Show that there are infinitely many examples (that are
not affinely equivalent) for which the areas of the four regions MBO,BCO,CNO
and AMON are all integers.

We received four correct solutions to this problem, each utilizing a different con-
struction. We feature three of them.

Solution 1, based on the construction by Digby Smith.

For arbitrary p, q ∈ N with p > q, the numbers p2 − q2, 2pq, and p2 + q2 (and any
multiples thereof) form a Pythagorean Triple. The configuration AMBCN from
the problem is defined by

BC = 4pq(p2 − q2)(p2 + q2),

BM = CN = 4pq(p2 − q2)(2pq),

BN = CM = 4pq(p2 − q2)(p2 − q2).

Then ABC is isosceles and BMC and CNB are congruent and right angled. By
their definitions, the areas of both BMC and CNB are equal to BM ·CM/2 and
thus integers. If we define D to be the midpoint of BC, then BDO ∼ BNC and

DO =
NC ·BD
BN

=
8p2q2(p2 − q2) · 2pq(p2 − q2)(p2 + q2)

4pq(p2 − q2)2
= 4p2q2(p2 + q2).

The area of BCO is equal to BD ·DO/2 and therefore integer. It follows that the
areas of BMO and CNO are also integers. Finally ADC ∼ BNC and thus

AD =
BN ·DC
NC

=
4pq(p2 − q2)2 · 2pq(p2 − q2)(p2 + q2)

8p2q2(p2 − q2)
= (p2 − q2)2(p2 + q2).

The area of ABC is equal to BC · AD/2 and therefore integer. By subtracting
the areas of BMO, BCO, and CNO, we obtain finally that the area of AMON
is also an integer. As p, q can be arbitrarily chosen, we obtain an infinite number
of configurations that are not affinely equivalent (e.g. choose all pairs p, q with
gcd (p, q) = 1).
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Solution 2, abridged version of the solution by the Missouri State University Prob-
lem Solving Group.

Let A = (0, 0), B = (1, 0), C = (0, 1), M = (a, 0), and N = (0, b), where a and
b are rational and 0 < a < b < 1. The equations of the lines BN and CM have
rational coefficients, so the coordinates of O are rational. The area of a triangle
with vertices (x1, y1), (x2, y2), and (x3, y3) is

1

2

∣∣∣∣∣∣det

Ñ
1 x1 y1
1 x2 y2
1 x3 y3

é∣∣∣∣∣∣ .
Therefore, the areas of MBO, BCO, CNO, and AMON are all rational. By
stretching the triangle ABC, the corresponding areas can be made to be integers.
Since stretching does not alter the ratios AM/MB and AN/NC, the configurations
are not affinely equivalent for distinct choices of a and b.

Solution 3, by Titu Zvonaru.

Let a, b,m, n be positive integers and let ABC be a triangle with BC = 2a and
hA = b(m + 1)(n + 1)(m + n + 1). Choose the points M and N on AB and AC
such that

BM

BA
=

1

m+ 1
,

CN

CA
=

1

n+ 1
.

Denote by [XY . . . Z] the area of the polygon XY . . . Z. Then

[BMC] =
[ABC]

m+ 1
, [CNB] =

[ABC]

n+ 1
.

Suppose that AO intersects BC at A′. By Van Aubel’s Theorem for Cevian
triangles we obtain

AO

OA′
=
AM

MB
+
AN

NC
= m+ n

and therefore OA′ = AA′/(m+ n+ 1). It follows that

[BOC] =
[ABC]

m+ n+ 1
.

Thus the areas [ABC], [BMC], [CNB], and [BOC] are all integers and by taking
differences of these areas so are [MBO], [CNO], and [AMON ].

3916. Proposed by Nathan Soedjak.

Let a, b, c be positive real numbers. Prove thatÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
≥ 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.

There were 23 correct solutions, with two solutions from one solver, as well as a
Maple verification. We present a sampling of the different approaches.
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Solution 1, by Mohammed Aassila.

Note that x2 + y2 + z2 > xy+ yz+ zx and (x+ y+ z)2 > 3(xy+ yz+ zx) for real
x, y, z. The left side of the inequality is not less than b2 + c2 + a2. However

(a2 + b2 + c2)(a+ b+ c)2 > (ab+ bc+ ca)[3(ab+ bc+ ca)] = 3(ab+ bc+ ca)2,

and the desired result follows.

Solution 2, by Michel Bataille.

By homogeneity, we may suppose that a + b + c = 1. The inequality is then
equivalent to

(ab)4 + (bc)4 + (ca)4 > 3(a2b2c2)(ab+ bc+ ca)2.

Observe that

x4 + y4 + z4 =
1

4
[(x4 + x4 + y4 + z4) + (x4 + y4 + y4 + z4) + (x4 + y4 + z4 + z4)]

> x2yz + xy2z + xyz2 = xyz(x+ y + z),

and (x+ y + z)2 > 3(xy + yz + zx). Applying these inequalities leads to

(ab)4 + (bc)4 + (ca)4 = [(ab)4 + (bc)4 + (ca)4][(a+ b+ c)2]

> [a2b2c2(ab+ bc+ ca)][3(ab+ bc+ ca)]

= 3(a2b2c2)(ab+ bc+ ca)2,

as desired.

Solution 3, by Dionne Bailey, Elsie Campbell, and Charles Dimminnie; Angel
Plaza; Cao Minh Quang; and Edmund Swylan, independently.

Since x2 + y2 + z2 > xy + yz + zx,

ab

c
+
bc

a
+
ca

b
=

(ab)2 + (bc)2 + (ca)2

abc
>
abc(a+ b+ c)

abc
= a+ b+ c.

Using either the convexity of the function x2 or the inequality of the root-mean-
square and arithmetic mean, we find thatÅ

ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
>

1

3

Å
ab

c
+
bc

a
+
ca

b

ã2
>

1

3
(a+ b+ c)2 =

1

3

(a+ b+ c)4

(a+ b+ c)2

>
[3(ab+ bc+ ca)]2

3(a+ b+ c)2
= 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.
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Solution 4, by Paolo Perfetti.

Since
1

4

Å
x2y2

z2
+
x2y2

z2
+
y2z2

x2
+
z2x2

y2

ã
> xy

by the arithmetic-geometric means inequality, we can follow the strategy of Solu-
tion 2 to obtainÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
> ab+ bc+ ca =

3(ab+ bc+ ca)2

3(ab+ bc+ ca)
>

3(ab+ bc+ ca)2

(a+ b+ c)2

as desired.

Solution 5 by Henry Ricardo.

We haveÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
=

1

2

ï
a2
Å
b2

c2
+
c2

b2

ã
+ b2

Å
a2

c2
+
c2

a2

ã
+ c2

Å
b2

a2
+
a2

b2

ãò
> a2 + b2 + c2

>
(a+ b+ c)2

3

> 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.

3917. Proposed by Peter Y. Woo.

Given a circle Z, its center O, and a point A on Z, with only a long unmarked
ruler, and no compass, can you draw:

i) points B,C and D on Z so that ABCD is a square?

ii) the square AOBA′?

iii) the points B,W ′′,W and W ′ on Z such that angles AOB, AOW ′′, AOW
and AOW ′ are 90◦, 60◦, 45◦ and 30◦?

There were five correct solutions to this problem. We feature the one by the Mis-
souri State University Problem Solving Group.

We need the following basic construction: Given three collinear points A,B,C such

that AB = BC and a point P not on
←→
AC, we want to construct a line through

P parallel to
←→
AC. To do this, we choose a point Q on the ray

−→
AP such that P is

between A and Q. Denote the intersection of
←→
BQ and

←→
CP by R and denote the

intersection of
←→
AR and

←→
QC by S. We claim that

←→
PS is the line we seek. By Ceva’s

theorem,
AB

BC
· CS
SQ
· QP
PA

= 1,
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but since AB = BC this yields
QP

PA
=
QS

SC
and therefore

←→
PS and

←→
AC are parallel.

i) The intersection of
←→
OA and Z gives C. Choose any point X on Z other than A

or C and use the basic construction above to obtain a line through X parallel
to line AC. If this line only meets Z in a single point let B = X and D be
the intersection of line OB and Z. If the line meets Z in two distinct points,

S and T , let U be the intersection of
←→
AS and

←→
CT . Then B and D are the

intersections of
←→
UO with Z. Note that by symmetry,

←→
UO is perpendicular to←→

AC, which makes ABCD a square.

ii) Using the basic construction, we draw a line through A parallel to
←→
BD and a

line through B parallel to
←→
AC. Their intersection is the point A′.

iii) We constructed B in part i). The point where OA′ meets Z gives W . Let
E denote the intersection of OA′ and AB. Using the basic construction, if

we draw a line ` through E parallel to
←→
AC, the point of intersection of ` and

Z that lies between A and B gives W ′ (note that ` bisects OB, which gives

sin(^AOW ′) = 1/2). Similarly, a line through E parallel to
←→
BD gives W

′′
.

3918. Proposed by George Apostolopoulos.

Let a, b and c be positive real numbers such that a2 + b2 + c2 = 1. Prove that»
(ab)2/3 + (bc)2/3 + (ac)2/3 <

2 +
√

3

3
.

We received 22 correct solutions and one incorrect solution. We present the solu-
tion by Cristinel Mortici, slightly modified by the editor.

Recall the Power Mean Inequality: for x, y, z > 0 and m > nÅ
xm + ym + zm

3

ã1/m
>
Å
xn + yn + zn

3

ã1/n
.

The Power Mean Inequality with m = 1 and n = 2/3 givesÇ
(ab)2/3 + (bc)2/3 + (ca)2/3

3

å3/2

6
ab+ bc+ ca

3
6
a2 + b2 + c2

3
=

1

3
.

It follows that Ä
(ab)2/3 + (bc)2/3 + (ca)2/3

ä1/2
6 31/6.

Finally, the Geometric Mean-Arithmetic Mean Inequality gives us

31/6 = (1 · 1 ·
√

3)1/3 <
1 + 1 +

√
3

3
=

2 +
√

3

3
,

completing the proof.
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3919. Proposed by Michel Bataille.

Let I be the incentre of triangle ABC. The line segment AI meets the incircle
at M and the perpendicular to AM at M intersects BI at N . If P is a point of
the line AI, prove that PC is perpendicular to AI if and only if PN is parallel to
BM .

We received seven correct solutions. We present a composite of the similar solu-
tions by Šefket Arslanagić and by Peter Woo.

On the one hand,

PN ||BM ⇐⇒ ∆BIM ∼ ∆NIP ⇐⇒ IM

IB
=
IP

IN
.

On the other hand,

PC ⊥ AI ⇐⇒ ∆CPI has a right angle at P ⇐⇒ cos∠PIC =
IP

IC
.

Let D be the foot of the perpendicular from I to BC. Then ID = IM = r (the
inradius), and in right triangle BDI we have IB = r

sin B
2

, whence

IM

IB
=

r(
r

sin B
2

) = sin
B

2
. (1)

In right triangle IDC, we have

IC =
r

sin C
2

. (2)

Because ∠NIM is exterior to ∆BIA, ∠NIM = A
2 + B

2 = 90◦ − C
2 ; consequently,

in right triangle NMI we have

cos∠NIM = sin
C

2
=
IM

IN
=

r

IN

and, with the help of equation (2),

IN =
r

sin C
2

= IC. (3)

Because ∠PIC is an exterior angle of ∆AIC, ∠PIC = A
2 + C

2 = 90◦− B
2 , whence

cos∠PIC = sin
B

2
. (4)

Putting the pieces together, we deduce

PN ||BM ⇐⇒ IM

IB
=
IP

IN

⇐⇒ sin
B

2
=
IM

IB
=
IP

IC
(from (1) and (3))

⇐⇒ IP

IC
= cos∠PIC (from (4))

⇐⇒ PC ⊥ AI.
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3920. Proposed by Alina Ŝıntǎmǎrian.

Evaluate
∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
.

There were 15 submitted solutions for this problem, 14 of which were correct. We
present three solutions, representative of the two main solution methods utilized
together with one variant.

Solution 1, by the AN-anduud Problem Solving Group.

Consider the following two power series,

sinx =
∞∑
n=0

(−1)n · x2n+1

(2n+ 1)!
, and ex =

∞∑
n=0

xn

n!
, x ∈ R.

Hence, we have

sin 1 =
∞∑
n=0

(−1)n · 1

(2n+ 1)!
=
∞∑
n=0

Å
1

(4n+ 1)!
− 1

(4n+ 3)!

ã
,

and

e =
∞∑
n=1

1

n!
.

Using the above considerations, we get

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
=
∞∑
n=0

(4n+ 2)(4n+ 1) + 2(4n+ 2) + 1

(4n+ 2)!

=
∞∑
n=0

Å
1

(4n)!
+

2

(4n+ 1)!
+

1

(4n+ 2)!

ã
=
∞∑
n=0

1

n!
+
∞∑
n=0

Å
1

(4n+ 1)!
− 1

(4n+ 3)!

ã
= e+ sin 1.

Solution 2, by the group of Dionne Bailey, Elsie Campbell, and Charles Diminnie.

To begin, we note that for n > 0,

16n2 + 20n+ 7

(4n+ 2)!
=

(4n+ 2) (4n+ 1) + 2 (4n+ 2) + 1

(4n+ 2)!

=
1

(4n)!
+

2

(4n+ 1)!
+

1

(4n+ 2)!
,
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and hence,

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
=
∞∑
n=0

1

(4n)!
+ 2

∞∑
n=0

1

(4n+ 1)!
+
∞∑
n=0

1

(4n+ 2)!

(since the Ratio Test easily confirms that each of the three series on the right
converges).

The remainder of this solution depends on the following known series:

sin 1 =
∞∑
k=0

(−1)k

(2k + 1)!
, cos 1 =

∞∑
k=0

(−1)k

(2k)!
,

sinh 1 =
∞∑
k=0

1

(2k + 1)!
, cosh 1 =

∞∑
k=0

1

(2k)!
.

Since we have

(−1)k + 1 =

®
2 if k is even

0 if k is odd
and (−1)k+1 + 1 =

®
0 if k is even

2 if k is odd
,

we obtain:

sin 1 + sinh 1 =
∞∑
k=0

(−1)k + 1

(2k + 1)!
=
∞∑
n=0

2

[2(2n) + 1]!
= 2

∞∑
n=0

1

(4n+ 1)!
,

cos 1 + cosh 1 =
∞∑
k=0

(−1)k + 1

(2k)!
=
∞∑
n=0

2

[2(2n)]!
= 2

∞∑
n=0

1

(4n)!
,

− cos 1 + cosh 1 =
∞∑
k=0

(−1)k+1 + 1

(2k)!
=
∞∑
n=0

2

[2(2n+ 1)]!
= 2

∞∑
n=0

1

(4n+ 2)!
.

Therefore, we obtain,

∞∑
n=0

16n2 + 20n+ 7

(4n+ 2)!
=

cos 1 + cosh 1

2
+ (sin 1 + sinh 1) +

− cos 1 + cosh 1

2

= sin 1 + sinh 1 + cosh 1

= sin 1 +
e− e−1

2
+
e+ e−1

2
= sin 1 + e.

Solution 3, by Paolo Perfetti.

First, we have:

16n2 + 20n+ 7

(4n+ 2)!
=

1

(4n)!
+

2

(4n+ 1)!
+

1

(4n+ 2)!
.
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Let

f(x) =
∞∑
n=0

x4n

(4n)!
,

so that we obtain:

f ′(x) =
∞∑
n=1

x4n−1

(4n− 1)!
, f ′′(x) =

∞∑
n=1

x4n−2

(4n− 2)!
, f ′′′(x) =

∞∑
n=1

x4n−2

(4n− 2)!

f iv(x) =
∞∑
n=1

x4n−4

(4n− 4)!
=
∞∑
n=0

x4n

(4n)!
= f(x).

Thus f(x) satisfies f iv(x) = f(x), f(0) = 1, f ′(0) = 0, f ′′(0) = 0, f ′′′(0) = 0,
whose unique solution is f(x) = 1

2 coshx+ 1
2 cosx. Evaluating, we get

f(1) =
1

2
cosh 1 +

1

2
cos 1 =

∞∑
n=0

1

(4n)!
.

Moreover, if we define

g(x) =
∞∑
n=0

x4n+1

(4n+ 1)!
,

we get g(1) =
∑∞
n=0

1
(4n+1)! and g′(x) = f(x), g(0) = 0. This implies

g(x) =
1

2
sinhx+

1

2
sinx, g(1) =

1

2
sinh 1 +

1

2
sin 1.

Finally, defining

h(x) =
∞∑
n=0

x4n+2

(4n+ 2)!
,

we get h(1) =
∑∞
n=0

1
(4n+2)! and h′(x) = g(x), h(0) = 0. This implies

h(x) =
1

2
coshx− 1

2
cosx, h(1) =

1

2
cosh 1− 1

2
cos 1.

Summing up the terms, we obtain

f(1) + 2g(1) + h(1) = e+ sin 1.

Editor’s Comment. The presented solutions illustrate three techniques: rearrange
the summations wisely to get a simple expression, rearrange the summations and
then recall other atypical power series that make things work, and solve a couple of
DEs to avoid having to work too much with power series. Wagon commented that
the sum can be explicitly computed when the numerator is an arbitrary quadratic
in n.
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Mihaela Berindeanu, Bucharest, Romania: 4014
George Apostolopoulos, Messolonghi, Greece: 4016, 4019
Michel Bataille, Rouen, France: 4015, 4017
Ovidiu Furdui, Campia Turzii, Cluj, Romania: 4018
Leonard Giugiuc, Romania : 4012
Leonard Giugiuc and Daniel Sitaru, Romania : 4020
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Fernando Ballesta Yagüe, Murcia, Spain: CC107, CC108
Michel Bataille, Rouen, France : OC156, OC157, 3911, 3912, 3913, 3914, 3916, 3917,

3918, 3919, 3920
Paul Bracken,University of Texas, Edinburg, TX : 3911
Scott Brown, Auburn University Montgomery, Montgomery, AL, USA: CC107
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Missouri State University Problem Solving Group : 3913, 3915, 3917, 3920

Crux Mathematicorum, Vol. 41(2), February 2015


