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SKOLIAD no. 77

Shawn Godin

Please send your solutions to the problems in this edition by 1 October 2004.
A copy of MATHEMATICAL MAYHEM Vol. 3 will be presented to one pre-
university reader who sends in solutions before the deadline. The decision
of the editor is final.

We will only print solutions to problems marked with an asterisk (x) if
we receive them from students in grade 10 or under (or equivalent), or if we
receive a unique solution or a generalization.

—_—_— NN S O ————

This month’s problems are drawn from the county-wide and national
mathematics competitions held by the Croatian Mathematical Society in
2003. Thanks to Mr. Zeljko Hanj$ of the Croatian Mathematical Society for
making these problems available.

Croatian Mathematical Society City-Level
Competition
Junior Level (Grade 1), March 7, 2003

1. A road construction unit is made up of a certain number of workers and a
certain amount of equipment. Three units have paved 20 km of a road in 10
days. How many additional units are needed if the remaining 50 km of the
road must be paved in 15 days?

2. Let AABC be an isosceles triangle whose angle at vertex A equals 120°.
The line passing through this vertex and perpendicular to one of the adjacent
sides of the triangle divides the triangle into two triangles, one of which is
obtuse and has an inscribed circle with radius equal to 1. Determine the area
of AABC.

3. calculate the sum

2 2 2

2
2.5 5.8 T 1997.2000 " 2000-2003 "
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4 1f the real numbers a, b, ¢ satisfy

a b c

b+c+c+a+a—|—b

prove that
a? b2 c?

b+c+c+a+a+b

—_—— N r—— S ———

Next we present a solution from the 2003 Fryer Contest in the Septem-
ber 2003 issue ([2003 : 259]).

3. Inthe diagram, ABCD is a square and the coordinates of A and D are
as shown.

(a) () The point P has coordinates (10,0). Show that the area of
triangle PCB is 10.

(b) () Point E(a,0) is on the z-axis such that triangle CBE lies
entirely outside square ABCD. If the area of the triangle is equal to the
area of the square, what is the value of a?

(¢) () Show that there is no point F' on the z—axis for which the area
of triangle ABF is equal to the area of square ABCD.

Extension to #3: (x) G is a point on the line passing through the points
M (0,8) and N (3, 10) such that ADCG lies entirely outside the square. If
the area of ADCG is equal to the area of the square, determine the coordi-
nates of G.

D (1,8) C

A(1,4) B

P(10,0)
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Solution by Karthik Natarajan, Grade 5 student, Edgewater Park Public
School, Thunder Bay, ON.

(a) We need to calculate the base, which is side CB, and the height of
triangle PCB. Since we know the coordinates of A = (1,4) and D = (1, 8),
side AD must be 4. Since ABC D isasquare, CB = AD = AB =CD = 4.
Because B is to the right of A, we must have B = (5,4). The height of
triangle PCB is now 10 — 5 = 5. Therefore, the area of triangle PCB is
4x5/2=10.

(b) Because triangle CBE lies outside of ABC D, the z—coordinate of
E is greater than 5. Also, ABCD is a square of area 16. Side CB = 4, and
because the area of triangle C BE is equal to the area of square ABC D, the
height of triangle C BE must be 8. We add the height to the xz—coordinate of
B to get FE as (13,0).

(¢) In triangle ABF, point F is on the z—axis and side AB has length 4.
We know that the distance from AB to the xz-axis is 4. Therefore, the height
of F from AB is always 4. This means that the area of triangle ABF is
always 4 x 4/2 = 8. Thus, there cannot be a point F on the z—axis such that
the area of triangle ABF is equal to the area of square ABC D (which is 16).

Extension to #3: Side DC has length 4. Since the area of triangle DCG
is equal to the area of square ABC D, which is 16, the height of G from DC
must be 8 (because 4 x 8/2 = 16). Now we add the height to the distance
from the z—axis to line DC, and we get 16, which is the y—coordinate of G.

I figured out the xz—coordinate of G by following a pattern. The point G
is on a line passing through the points (0, 8) and (3,10). We see that when
the z—coordinate goes up by 3, the y—coordinate goes up by 2 on this line.
Following this pattern, we get: (0, 8), (3,10), (6,12), (9,14), and (12, 16).
Therefore, the coordinates of G are (12, 16).

—_—_— N~ S O ————

Lastly, we present some solutions and generalizations to the 2002
W.J. Blundon Mathematics Contest [2003 : 261-262].

1. (%) Five years ago Janet was one sixth of her mother’s age. In thirteen
years she will be half her mother’s age. What is Janet’s present age?

Solution by Yufei Zhao, grade 10 student, Don Mills Collegiate Institute,
Toronto, ON.
Let Janet’'s and her mother’s present ages be = and y, respectively.
Then the conditions given in the problem form a system of equations
T—5 = é(y —5),
x+13 = L(y+13).
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Solving this simple system, we get the solution = = 9% and y = 32. Hence,
Janet is 9% years old now.

2. (*)If a4+ b+ c =0, prove that a® + b2 4 ¢ = 3abc.

Solution by Yufei Zhao, grade 10 student, Don Mills Collegiate Institute,
Toronto, ON.

Since ¢ = —a — b,
a®+v34+c = a®+b34 (—a—-0>)3
= a3+ b2 —a®—3a%b— 3ab®* -1
= 3ab(—a —b)
3abe.

3. (%) A certain rectangle has area 6 and diagonal of length 2+/5. What is its
perimeter?

Solution by Yufei Zhao, grade 10 student, Don Mills Collegiate Institute,
Toronto, ON.

Let the two adjacent sides of the rectangle have lengths a and b.

Then its area is ab = 6, and its diagonal has length v/aZ + b2 = 2+/5, giving
a? + b2 = 20. Thus,

(a+b)2=a2+b2+2ab=32 — a+b=4V2,
(a—b)2=a?+b>—2ab=8 —= a—b=2V2.

Solving the system, we get a = 3v/2 and b = /2. Therefore, the perimeter
of the rectangle is 8v/2.

6. Points A and B are on the parabola y = 2x2 4 4 — 2. The origin is the
mid-point of the line segment joining A and B. Find the length of this line
segment.

Solution and generalization by Yufei Zhao, grade 10 student, Don Mills
Collegiate Institute, Toronto, ON.

Consider a half-turn about the origin. This reflection will exchange the
points A and B, so that A and B belong on both the original parabola and
the image parabola. The equation of the latter is —y = 2(—z)% +4(—z) — 2,

or equivalently, y = —2a22 4 4z + 2. Thus, we need to solve the system
y = 222442 —2,
Yy = — 22 +4x + 2.

By adding the two equations, we get y = 4x, and by substituting this back
into either equation, we get = £1. Continuing, we see that the two points
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of intersection are (1,4) and (—1, —4), which are the points A and B. The
distance between them is 21/17.

In general, if the parabola were given by the equation y = az?+bx+c,
then, by following the exactly same procedure as above, we find A and B

to be (£\/—c¢/a,xb\/—c/a) and |AB| = 2,/—c(1 + b%)/a. Of course, in

order for it to be feasible, —c/a must be non-negative.

9. For what conditions on a and b is the line = + y = a tangent to the circle
x2 +y? = b?

Generalization by Yufei Zhao, grade 10 student, Don Mills Collegiate
Institute, Toronto, ON.

In general, if we are given a line Az + By + C = 0 and an ellipse
(z/a)?+(y/b)? = 1, then, by applying the transformation (z, y) — (ax, yb),
the line and the ellipse (which is now a circle) become aAx + bBy + C =0
and z? 4+ y% = 1, respectively. If they are tangent to each o|th<|ar, then the

C
VAT eE
or equivalently, a2A2 + b2B? = C?, and this is the necessary and sufficient
condition for the original line and ellipse to be mutually tangent.

—_— N r————

new line must be one unit away from the origin. Thus,

That ends this issue of Skoliad, and the winner of the past volume of
Mathematical Mayhem is Yufei Zhao. Congratulations Yufei! Keep sending
in your contests and solutions.

——— | NS
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by
High School and University Students. It continues, with the same emphasis,
as an integral part of Crux Mathematicorum with Mathematical Mayhem.
The Mayhem Editor is Shawn Godin (Ottawa Carleton District School
Board). The Assistant Mayhem Editor is John Grant McLoughlin (University
of New Brunswick). The other staff members are Larry Rice (University of
Waterloo) and Dan MacKinnon (Ottawa Carleton District School Board).

—_— N~ S ————

Mayhem Problems

Please send your solutions to the problems in this edition by 1 October 2004.
Solutions received after this date will only be considered if there is time before pub-
lication of the solutions.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8,
French will precede English.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

—} N ——~
M138. Proposed by Richard Hoshino, Dalhousie University, Halifax, NS
and Sarah McCurdy, University of New Brunswick, Fredericton, NB.
Five points are located on a line. When the ten distances between pairs
of points are listed from smallest to largest, the list reads:
2, 4, 5, 7, 8, k, 13, 15, 17, 19.

Determine the value of k.

M139. Proposed by the Mayhem Staff.

The digits 1, 2, 3, 4, and 5 are each used once to compose a 5-digit
number abcde, such that the 3-digit number abc is divisible by 4, bed is
divisible by 5, and cde is divisible by 3. Find the 5-digit number abcde.

M140. Proposed by the Mayhem Staff.

Arthur, Bernie, and Charlie play a game in which the loser has to triple
the money of each other player. Three games are played, in which the losers
are Arthur, Bernie, and Charlie, in that order. Each player ends with $27.
How much money did each person have at the outset?
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M141. Proposed by the Mayhem Staff.

Create a list of perfect squares in which all of the digits are perfect
squares (that is, 0, 1, 4, 9).
M142. Proposed by Ali Feizmohammadi, University of Toronto, Toronto,
ON.

For every natural number n, define S(n) to be the unique integer m
(if it exists) which satisfies the equation

m

o= e 3] 3] ]

where |z ] is the greatest integer not exceeding =.
(a) Find S(3438).

(b) Does there exist a number k such that, for any non-negative integer n,
at least one of S(n + 1), S(n+ 2), ..., S(n + k) exists?

M143. Proposed by the Mayhem Staff.

Find the equation(s) of the line(s) through the point (2, 5) for which the
y-intercept is a prime number and the z—intercept is an integer.

M138. Proposé by Richard Hoshino, Université Dalhousie, Halifax, NS et
Sarah McCurdy, Université du Nouveau Brunswick, Frédéricton, NB.

On donne cing points sur une droite. Quand on é&crit les dix distances
entre les points en ordre croissant, on obtient la liste :
2, 4, 5, 7, 8, k, 13, 15, 17, 19.

Trouver la valeur de k.

M139. Proposé par I'Equipe de Mayhem.

Chacun des chiffres 1, 2, 3, 4 et 5 est utilisé une seule fois pour écrire
un nombre de cinq chiffres abede, et ceci de telle sorte que le nombre de 3
chiffres abe soit divisible par 4, que bed soit divisible par 5, et que cde soit
divisible par 3. Trouver ce nombre de 5 chiffres abcde.

M140. Proposé par I'Equipe de Mayhem.

Arthur, Bernard et Charles jouent un jeu dans lequel le perdant doit
tripler I’argent de chacun des autres joueurs. On joue trois parties et tour a
tour, Arthur, puis Bernard et enfin Charles, sort perdant. Chaque joueur finit
avec $27 en poche. Combien d’argent chacun d’eux avait-il au départ ?
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M141. Proposé par I'Equipe de Mayhem.

Trouver une liste de carrés parfaits ot tous les chiffres sont des carrés
parfaits (c’est-a-dire 0, 1, 4, 9).
M142. Proposé par Ali Feizmohammadi, Université de Toronto, Toronto,
ON.

Pour chaque nombre naturel n, on définit S(n) comme l'unique
entier m (s'il existe) satisfaisant I’équation

n — LmJ+{:J+L’;J+...+{2J+...

ou |z est le plus grand entier plus petit ou égal a x.
(a) Trouver S(3438).

(b) Existe-t-il un nombre k tel que pour tout entier non négatif n, au moins
undes S(n+ 1), S(n+2), ..., S(n + k) existe?

M143. Proposé par I'Equipe de Mayhem.

Trouver I’équation d’une (ou plusieurs) droite passant par le point (2, 5)
et dont I'intersection avec I’axe des = est un entier et celle avec I’axe des y
est un nombre premier.

_—_— NS —————

Mayhem Solutions

M77. Proposed by Richard Hoshino, Dalhousie University, Halifax, NS.

Find all ordered pairs of integers (a,b) such that the equation
2 + |y? — 6ay + b| = b — a? + 6 has exactly 2001 solutions in positive
integers (x,y).

Editor’s Note. The problem cannot be solved as stated. The problem will be
reworded and reposted in an upcoming issue.

M78. Proposed by K.R.S. Sastry, Bangalore, India.

In a right-angled triangle we consider the two vertices at the two acute
angles and draw medians from them to the opposite sides. Determine the
maximum (acute) angle between these medians.
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Solution by Gustavo Krimker, Universidad CAECE, Buenos Aires, Argentina.

We will show that the maximum angle has measure arctan% and this
value occurs only for isosceles triangles.

Let us consider the points A(0, yo), B(0,0), C(xg,0) with xg, yo > 0.
These points determine a right triangle with right angle at B. The median
from C to the side AB joins the point C(x, 0) to the point (0, £yo), and the
median from A to the side BC joins the point A(0, o) to the point (3o, 0).

Yo —2yo
€T

The slopes of these medians are ;m and

, respectively.

0 o
Let o be the acute angle between these medians. Then

—Yo —2yo
— arctan .
o Lo

a = arctan

Applying the well-known identity arctan x — arctan y = arctan <1m+_wyy) ,
we obtain

3yoxo

a = arctan ————— .
2(x3 + v3)

2 2
From the AM-GM Inequality, we have w > xoyo. Therefore,
3:1:0y0 3 .
—— 2 __ < 2. Thus, we obtain
2(z3 +y3) — 4
3yox 3
a = arctan% < arctan —.
2(xg + y5) 4

Note that equality holds if and only if o = .

Also solved by Andrew Mao, A.B. Lucas Secondary School, London, ON; Yifei Chen,
student, West Windsor Plainsboro High School North, Plainsboro, N], USA; and Ovidiu Furdui,
student, Western Michigan University, Kalamazoo, M1, USA.

M79. Proposed by the Mayhem Staff.

Three people play the following game. N marbles are placed in a bowl
and the players, in turn, remove 1, 2, or 3 marbles from the bowl. The person
who removes the last marble loses. For what values of NV can the first and
third player work together to force the second player to lose? (Inspired by a
recent problem on the Canadian Open Mathematics Challenge.)

Solution by Geneviéve Lalonde, Massey, ON.

Clearly, if N = 2, 3, 4, it is possible, as the first player can just remove
1, 2, or 3 marbles and force the second player to take the last marble. If
N = 5, 6, the first and third players cannot force the second player to lose
because he can always play so that the sum of his and the first player’s play
is 4 (which forces the third player to lose if N = 5, or the first player to lose
if N = 6).
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For N > 6 the first player and the third player can always force the
second player to lose by adopting the following strategy: on the first play of
the game the first player always removes 1 marble, leaving N — 1 marbles.
After the second player’s first play, there will be £ marbles remaining where
N—-4<k<N—2. Thus, 3 < k.

Now the third and the first players can conspire to leave k' marbles,
k' = 1 (mod 5). This is always possible, because the sum of the marbles
removed by the third player and the first player can be 2, 3, 4, 5, or 6. Thus,
for k = 0, 1, 2, 3, 4 (mod 5), they should play a sum of 4, 5, 6, 2, 3,
respectively. Since k > 3, there are always sufficient marbles to do this.

For each subsequent move, the third and the first players play so that
the sum of the three moves (the second player, then the third, then the first)
is 5, which is always possible (for example, the third player can always play
1, then the first player plays 4 minus the second player’s play). Thus, the
second player is always left with a number congruent to 1 (mod 5) and will
eventually be left with 1, at which time he will lose.

MS80. Proposed by ]. Walter Lynch, Athens, GA, USA.

Compute the number of ways that 4 tires can be rotated so that each
tire is relocated. (Editor’s note: “rotating” a car’s tires means changing their
position on the car so that they can wear more evenly.)

Combined solution by Andrew Mao, A.B. Lucas Secondary School, London,
ON; and Yifei Chen, student, West Windsor Plainsboro High School North,
Plainsboro, NJ, USA.

This problem is an example of a derangement problem. The derange-
ments of an ordered set are the permutations in which there are no fixed
points, in this case tires. The number of such derangements is

o= (o= (- (e (o=

The formula is the result of applying the principle of inclusion/exclusion
to the problem. The first term in the formula is simply the total number of
ways of arranging 4 symbols. The second term is the correction to ensure
that all such permutations with one fixed point are removed. But, since the
permutations with two fixed points have now been removed twice, we must
make another correction to ensure that we have exactly zero of these. This
correction gives rise to our third term. If we continue to correct our formula
so that permutations with three and four fixed points are counted zero times,
we arrive at the formula above.

[ Editor: The reader might like to see how similar ideas are handled in
the Mayhem article “Binomial Inversion: Two Proofs and an Application to
Derangements”, by Heba Hathout [2003 : 275-278].]
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MS81. Proposed by K.R.S. Sastry, Bangalore, India.

Let a # 0, b, c be integers and sin 6, cos 6 be the rational roots of the
equation ax? + bx 4+ ¢ = 0. Show that a & 2c are perfect squares.
Solution by Robert Bilinski, Outremont, QC.

To arrive at this result, it is necessary to suppose that the coefficients
have had all common factors removed. Thus, (a,c) = 1. The two solutions

— /b2 —
of the quadratic equation ax?+bx+c = 0 are b+ 2’; dac. Setting these

two roots to cos 6 and sin 0, the identity sin® 6 + cos? @ = 1 is equivalent to
b? — 2ac = a?, or b2 = a(a + 2¢).

Then b2 — 4ac = a(a — 2¢). But both sides of this equation must be
perfect squares, since the roots cos 8 and sin 6 are rational. Since (a,c) = 1,
it follows that a and a — 2c have no common factors, and each must be a
perfect square separately. Also, from the equation b> = a(a + 2c), the
condition (a, a + 2¢) = 1 forces a + 2c to be a perfect square, since a and b?
are perfect squares.

Also solved by Ovidiu Furdui, student, Western Michigan University, Kalamazoo, MI,
USA; Andrew Mao, A.B. Lucas Secondary School, London, ON; Yifei Chen, student, West

Windsor Plainsboro High School North, Plainsboro, NJ], USA; and Gustavo Krimker,
Universidad CAECE, Buenos Aires, Argentina.

MS82. Proposed by the Mayhem staff.

In number theory the function w(n) is the number of distinct primes
dividing n. For example, w(12) = 2 since 12 = 2 x 2 x 3. Prove that for
each positive integer n

Inn > wn)ln2.

Solution by Gustavo Krimker, Universidad CAECE, Buenos Aires, Argentina.

Letn = p{'py?-- -pz‘(":l')l), where pq, p2, ..., Pu(n) are distinct primes
and ay, as, ..., ay(n) are positive integers. Since a; > 0 and p; > 2, we
have

w(n) w(n) w(n)
Inn = In pr" > In Hpi > In HZ
=1 =1 =1

= In2¢™ = w(n)In2.

Also solved by the Austrian IMO Team 2003; Robert Bilinski, Outremont, QC; Yifei Chen,
student, West Windsor Plainsboro High School North, Plainsboro, NJ, USA; and Ovidiu Furdui,
student, Western Michigan University, Kalamazoo, M1, USA.

——— | NS
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THE OLYMPIAD CORNER
No. 237

R.E. Woodrow

To begin this number, we give Selected Problems from Israel
Mathematical Olympiads, 2001. Thanks go to Chris Small, Canadian Team
Leader to the 42" IMO, for collecting them for us.

ISRAEL MATHEMATICAL OLYMPIADS 2001
Selected Problems

1. Find all solutions of

1+ T2+ -+ 2000 = 2000,

m%"‘m;"'"""m‘zlooo = mi"l‘mg"‘"""wgoom
2. Given 2001 real numbers T1, T2, ..., T2001 SUch that 0 < z,, < 1 for
eachn =1, 2, ..., 2001, find the maximum value of

1 2001 1 2001 2
2
—_— xr — —_— X .
<2001 2_: "> <2001 2_: ")
n=1 n=1

Where is this maximum attained?

3. Weare given 2001 lines in the plane, no two of which are parallel and no
three of which pass through a common point. These lines partition the plane
into some regions (not necessarily finite) bounded by segments of these lines.
These segments are called sides, and the collection of the regions is called a
map. Two regions on the map are called neighbours if they share a side.

The set of intersection points of the lines is called the set of vertices.
Two vertices are called neighbours if they are found on the same side.

A legal colouring of the map is a colouring of the regions (one colour
per region) such that neighbouring regions have different colours.

A legal colouring of the vertices is a colouring of the vertices (one colour
per vertex) such that neighbouring vertices have different colours.

(i) What is the minimum number of colours required for a legal colouring
of the map?

(ii) What is the minimum number of colours required for a legal colouring
of the vertices?

4. The lengths of the sides of triangle ABC are 4, 5, 6. For any point D on
one of the sides, drop the perpendiculars DP, DQ onto the other two sides
(P, Q are on the sides). What is the minimal value of PQ?
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5. Triangle ABC in the plane II is called good if it has the following
property: For any point D in space, not in the plane II, it is possible to
construct a triangle with sides of length |CD|, |BD|, |AD|. Find all the
good triangles.

6. (a) Find a pair of integers (x, y) such that
1522 4+ y2 = 22000
(b) Does there exist a pair of integers (x, y) with = odd, such that
15$2 + y2 — 22000 ?
—_—r———— ——

Next we give the problems of the 215 Brazilian Mathematical Olympiad.
Thanks again to Chris Small, Canadian Team Leader to the 42" IMO, for
collecting them for us.

21 BRAZILIAN MATHEMATICAL OLYMPIAD 2001
First Day

1. Let ABCDE be a regular pentagon such that the star ACEBD has
area 1. Let P be the point of intersection of AC and BE, and let Q be the
point of intersection of BD and CE. Find the area of APQD.

2. Prove that there is at least one non-zero digit between the 1 000 000t
and the 3000 000" decimal digits of /2.

3. One must place n pieces on the squares of a 10 x 10 board such that no
four pieces are the vertices of a rectangle with sides parallel to the sides of
the board. Find the greatest value of n for which this is possible.

Second Day

4 Planet Zork is spherical and has many towns. For each town there is a
corresponding antipodal town (that is, symmetric in relation to the centre of
the planet).

There are roads connecting pairs of towns in Zork. If there is a road
connecting towns P and Q, then there is also a road connecting towns P’ and
Q’, where P’ is the antipode of P and Q’ is the antipode of Q. The roads
do not cross each other. For any two given towns P and Q, it is possible to
travel from P to Q along some sequence of roads.

The prices of Kriptonita in Urghs (the planetary currency) in two towns
connected by a road differ by no more than 100 Urghs. Prove that there exist
two antipodal towns such that the prices of Kriptonita in these towns differ
by no more than 100 Urghs.
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5. There are n football teams in Tumbolia. A championship is to be
organized in which each team plays against every other exactly once.
Every match must take place on a Sunday, and no team can play more than
once on the same day.

Find the least positive integer m for which it is possible to set up a
championship lasting m Sundays.

6. Given a triangle ABC, explain how to construct with straight-edge and
compass a triangle A’ B’C”’ of minimum area such that

C'e AC, A€ AB, B’ € BC,

and
/B'A'C' = /BAC, ZA'C'B’'=/ACB.

%

To round out the problem sets for this number we present the 49th
Mathematical Olympiad of Lithuania. Thanks again go to Chris Small for
providing us with this set for our puzzling pleasure.

49" MATHEMATICAL OLYMPIAD OF LITHUANIA
2000

Forms 9 and 10

1. na family there are four children of different ages, each age being a
positive integer not less than 2 and not greater than 16. A year ago the
square of the age of the eldest child was equal to the sum of the squares of
the ages of the remaining children. One year from now the sum of the squares
of the youngest and the oldest will be equal to the sum of the squares of the
other two. How old is each child?

2. A sequence a;, ag, as, ... is defined such that a,, = n? + n + 1 for
all n > 1. Prove that the product of any two consecutive members of the
sequence is itself a member of the given sequence.

3. Inthe triangle ABC, the point D is the mid-point of the side AB. Point
FE divides BC in the ratio BE : EC = 2 : 1. Given that ZADC = /BAE,
determine /BAC.

4 Find all the triples of positive integers x, y, z with z < y < z such that
1 1 1

r Yy z

is a positive integer.
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Forms 11 and 12

5. For the aircraft pilots K, L, M, who intended to become star fighters, an
examination consisting of several tests was organized. In each test, the pilots
were ranked first, second, and third, and points were awarded as follows:
A points for first, —B points for second, and —C points for third (where
A, B, C are positive integers with A > B > C > 0). After all the tests,
K had accumulated 22 points, while L and M had —9 points each. The test
of reaction times was won by L. Who took second place in the running test?

6. A function f : R — R satisfies the following equation for all real = and y:

(x+y)(f(=) — f(y) = f(=*) = f(y?).

Find: (a) one such function; (b) all such functions.

7. Aline divides both the area and the perimeter of a triangle into two equal
parts. Prove that this line passes through the incentre of the triangle. Does
the converse statement always hold?

8. The equation 2 + y2 + 22 + u? = zyzu + 6 is given. Find:
(a) at least one solution in positive integers;
(b) at least 33 such solutions;

(c) at least 100 such solutions.

—_—— N r—— S ———

Now we turn to readers’ submissions for problems of the Russian
Mathematical Olympiad 1999, 11*" Form given [2001 : 420-421].

1. [O. Podlipsky] Do there exist 19 different positive integers that sum to
1999 and such that the sum of the decimal digits of each is the same?

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Christopher ].
Bradley, Bristol, UK; and Hongyi Li, student, Sir Winston Churchill High
School, Calgary, AB. We give Bradley’s write-up.

Let S(n) be the digital sum of n. This function is known to satisfy
S(m+mn) = S(m)+ S(n) (mod 9) .

If s is the common digital sum of the 19 numbers that we wish to sum to
1999, it follows that

19s = 1+9+9+9 (mod 9) .

Hence, s =1 (mod 9).
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Clearly, s cannot equal 1; thus, the first possibility is s = 10. The
smallest 19 numbers with digital sum 10, namely 19, 28, 37, 46, 55, 64, 73,
82, 91, 109, 118, 127, 136, 145, 154, 163, 172, 181, and 190, sum to 1990.
Since the next integer with digital sum equal to 10 is 208, the next smallest
possible sum is 1990 4+ 208 — 190 = 2008. Hence, s cannot equal 10.

For s > 19 the smallest possible 19 numbers add up to much more
than 1999; whence it is impossible to obtain the required sum.

2. [S. Berlov] A function f : Q — Z is considered. Prove that there exist
two rational numbers a and b such that
@0 +10 (220,

Combination of solutions by Pierre Bornsztein, Maisons-Laffitte, France; and
Bruce Crofoot, University College of the Cariboo, Kamloops, BC.

Assume the contrary (with the aim of reaching a contradiction). Then,
for all distinct rational numbers a and b,

f<“+b) < f@+ 7).

2 2 M

This condition is not affected by adding a constant to the function f.
Therefore, we may assume that f(—1) < 0 and f(1) < 0, without loss
of generality.

We claim that for alln € NU {0} and x € {—27", 0, 27"}, we have
f(x) < —n. To prove this, we use induction on n. For n = 0, we must
consider x € {—1, 0, 1}. We have f(£1) < 0, and hence, using (1),

f0) = f (—1 — 1) < TWHIED
2 2
Thus, the claim is true for n = 0.

Now consider any fixed n for which the claim is true. Using (1) and the
induction hypothesis, we have

oiz—"> - f(0) + f(£27™) g Tnon
2 2 2

= —nNn.

f(x27") = f(

Since f takes only integer values, we must have f(+27""1) < —(n + 1).
Then, using (1) again,

2—n—1 _ 2—n—1> < f(z—n—l) +f(_2—n—1)

< - 1).
2 2 s —(n+1)

f) = f (
This completes the induction and proves the claim.

We have shown that £(0) < —n for all non-negative integers n. This
is impossible. Therefore, there is no function f : Q — Z that satisifies (1)
for all distinct rational numbers a and b.
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3. [M. Sonkin] The incircle of quadrilateral ABC D touches the sides DA,
AB, BC, CD in K, L, M, N, respectively. Let S;, S3, S3, S; be the
incircles of triangles AKL, BLM, CM N, DK N, respectively. Let l4, 5,
I3, 14 be the common external tangents to the pairs S; and S5, S» and S3, S3
and S4, S; and S;, different from the sides of quadrilateral ABCD. Prove
that 14, I, 3, 14 intersect in the vertices of a rhombus.

Solution by Christopher ]. Bradley, Bristol, UK, modified by the editor.

Let r be the radius of the incircle of quadrilateral ABCD. Let
1 1 1 1

Note that o + 3 + v + 6 = 180°.

Triangles AKI and ALI are congruent, since they are right-angled,
with a common hypotenuse and KI = LI = r. Therefore, AK = AL
and /TAK = /IAL = «. Since AI is the bisector of ZA in the isosceles
triangle K AL, we have AT 1 KL. Then, since ZALI = 90°, we see that
/KLI = /IAL = o (and also ZLKT = «). Hence, KL = 2r cos .

Let I; be the point at which the incircle of ABCD intersects the line
segment AI, and let r; be the distance from I; to AL (which equals the
distance from I, to AK). We claim that I; and r; are the centre and radius
of S;. To prove this, first note that AT = AI, + r, with AT = rcsca and
AI, = ri csc . Thus, we have r csc a = r1 csc a + r; that is,

ry = (1l —sina). @



146

Since the distance from I to KL is rsin /ZK LI = r sin «, the distance from
I, to KL is r — rsina = r;. We conclude that the point I; is the same
distance r; from each side of A AK L, which proves the claim.
Similar considerations apply to the incircles S, S3, and S,. We denote
their centres by I, I3, and I, and their radii by r3, r3, and r4, respectively.
Now consider AII I,. It is isosceles, with II; = II, = r. Since
LI 11, = ZAIB = 180° — o — 3, we have

LILI, = /LI = (a+8), )

and hence,
LI, = 2rcos[3(a+ )] . (3)

Let 6 be the angle between the lines I I, and £- that contains the point
I in its interior. We will prove that 8 = ~ + %(a + B3).

Case 1. 8 < « (or, equivalently, ro > r3, as in the figure).

Then the lines BC and ¢, meet on the extension of BC beyond C. Let
the point where they meet be denoted by S, and let T be the point where £,
intersects I;I. Thus, ZI; TS = 0.

From (2), by symmetry, we have /11,13 = %(B + «). This angle is
exterior to AI,BS opposite the interior angles Z/I,BS = 3 and ZI,SB.
Therefore, /I,SB = (8 +~) — B = 3(v — B). Since SI bisects ZT'SB,
we also have /I, ST = (v — B).

Now @ is an exterior angle of ATI,S opposite the interior angles
LI;ST = (v — B) and LTS = 3(a+B) + 5(8+7) =B+ 3(a+7).
Therefore,

0 =B+5(at+tN+tz(v-B=7+3+p).

Case 2. 3 = v (or, equivalently, ro = r3).
Then the three lines BC, I,I3, and £, are parallel. Hence,

0 = ZLhbls = 3(a+B)+3(B+7) = B+3(a+7) = v+i(a+h).

Case 3. 3 > ~ (or, equivalently, ry < r3).

Then the lines BC and ¢, meet on the extension of BC beyond B. The
angle at which they meet is 3 — ~ (from Case 1, with 8 and ~ interchanged).
An argument similar to that of Case 1, leads to § = v + 1 (a + 3).

In all three cases,
0 = v+ 3(a+pB) = v+ 3(180° —v —98) = 90° + 3(v —9).

By symmetry, the angle between I,I; and ¢4 which contains I in its
interior is 90° + 1 (6 — ). Since the sum of this angle and 6 is 180°, the lines
£5 and £4 are parallel. Similarly, £; and £3 are parallel. Thus, £y, €2, £3, £4
intersect in the vertices of a parallelogram.
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Since 0 is one of the two angles between I; I, and £, (the other being
180° — 0), the perpendicular distance between the lines parallel to £ that
pass through I, and I is I; I, sin @ = I, 1, cos[%('y —6)], where I, I, is given
by (3). Therefore, the perpendicular distance between £, and £4 is

2rcos [(a+ B)] cos [2(y = 8)] —r1 — 72
= rcos[%(a—i—,@—l—’y—d)]+rcos[%(a+ﬁ—7+6)}—7*1—7'2
= rcos [1(180° — 26)] + rcos [1(180° — 2v)] —ry — 13
= rsind +rsiny —ry —rg
= (r—ry)+(r—r3)—r1—72 = 2r —(r1+r2+1r3+74).

This, by symmetry, is equal to the perpendicular distance between ¢; and £5.
Hence, £, €2, £3, £4 intersect in the vertices of a rhombus.

7. [D. Tereshin] The plane o passing through the vertex A of tetrahedron
ABCD is tangent to the circumsphere of the tetrahedron. Prove that the
angles between the lines of intersection of « with the planes ABC, ACD,
and ABD are equal if and only if AB-CD = AC - BD = AD - BC.

Solution by Christopher ]. Bradley, Bristol, UK.

Let K be the centre of the circumsphere of ABCD. Without loss of
generality, assume that the radius of the sphere is 1. Take A to be the origin
—_— —— — — .
of vectors, and denote AB, AC, AD, and AK by b, c, d, and k, respectively.
Since KB =1 and |k| = 1, we have

1 =KB? = |k—b|? = 1+ |b>—-2(k-b).

Therefore, |b|? = 2(k - b). Similarly, |c|?> = 2(k - ¢) and |d|? = 2(k - d).

A vector normal to the plane o at A is k, and a vector normal to the
plane ABC is b x c. Hence, a vector along the line of intersection of o with
the plane ABC is

kX (cxb) = (k-b)c— (k-c)b = 1 (|b|?>c — [c|?b) .

Similarly, a vector along the line of intersection of o with the plane ACD
is 2 (|c|>d — |d|?c), and a vector along the line of intersection of o with the
plane ADB is 1 (|d|*b — |b|3d).

Let h, i, j be scaled versions of these vectors as follows:

h = [d]* (/b]*c — [c[*b) ,
i = |b*(le’d —|d|*c) ,
j = le[*(ld*b — |b|?d) .

Then h, i, j are coplanar, since they all lie in . Also, we have h+i+j = 0.
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We calculate
2
W2 = |d|*|Ibl%e — cI?b|

= |dI*(1b[*|e]? + |el*[b[> - 2/b|*|c|b - c)

= |d|*[bI?|cl?(Ib|* + |e* — 2b - c)

= [d[*|b]*|e/*[b —c|* = |b|*|c|*|d[*(AD*BC?);
that is, |h| = |bl|c||d|(AD - BC). Similarly, |i| = |b||c||d|(AB - CD) and
il = [bllc||d|(AC - BD).

Now we apply the known result that three coplanar vectors h, i, j such
that h + i + j = 0 make angles of 120° with one another if and only if
|h| = |i| = |j|. (One interpretation of this is that three coplanar forces with
resultant zero are equally inclined to each other if and only if they are of equal
magnitude.) We conclude that our particular vectors h, i, j make angles of

120° with one another if and only if AD - BC = AB-CD = AC - BD,
which is the required condition.

—_—_— N~ S —————

Next we turn to the December 2001 number of the Corner and solutions
by our readers to problems given there. We begin with the Composition de
Mathématiques 1999, Classe Terminal S [2001 : 484-485].

2. Résoudre dans IN I'équation en n:

n+2
(n+3)" = 3 k.
k=3

Solution by Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON.

The only solutions are n = 2 and n = 3.

n+2
Let f(n) = > k™ and g(n) = (n 4+ 3)™. Then
k=3

fa) = 3 #4 =49,
f(2) = 3244 =57 = g(2),
F(3) = 3*+4*+5% = 216 = 6 = g(3).

Thus, n = 2 and n = 3 are solutions. To prove that there are no solutions
n > 4, we will show that for all n > 4,

f(n) < g(n). 1
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Inequality (1) is easily checked for n = 4:

f(4) = 3*4+4*+5*4+6* = 814 256 + 625 + 1296
= 2258 < 2401 = 7* = g(4).

As an induction hypothesis, suppose that (1) holds for some n > 4. Then

n+3 n+2
fn+1) = > kK = > k-k"+ (n+3)"H!
k=3 k=3
n+2
< (n+2) ) k" + (n+3)"T

k=3
= (n+2)f(n) + (n+3)g(n)
< (n+2)g(n) + (n+3)g(n) = (n+3)"(2n +5).

Since g(n + 1) = (n + 4)™*+1, it suffices to show that
(n+3)"2n+5) < (n+4)"tL. )
Since (n + 3)"(2n + 5) < (n + 3)"(2n + 6) = 2(n + 3)"*!, inequality (2)

would be true if
4 n+1
(n + ) > 2. 3)

n+3
But

n_|_4 n+1 1 n+1
) - (ram) -
n+3 n+3

n+1 <n+1) 1
n+3 2 (n + 3)2
n+1 n(n + 1) 1_n2—3n—12

n+3  2(n+ 3)2  2(n+3)2
n’—-3n—-18  n—6

2(n+3)2  2(n+3)°

> 1+

Therefore, inequality (3), and hence (2), holds for all n > 6.

When n = 4, inequality (2) becomes 74 x 13 < 8% or 31213 < 32768;
when n = 5, inequality (2) becomes 8% x 15 < 96 or 491520 < 531441.
Thus, (2) holds for all n > 4, and our induction is complete.

_—_—m NS —e————
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Next we turn to solutions for problems of the 16t Iranian Mathematical
Olympiad 1998-1999, First Round, given [2001 : 485-486].

1. Suppose that a; < az < --- < a, are real numbers. Prove that:

4 4 4 4 4 4 4 4
aya,+azaz+---+an_1a,+aya; > azaj+taza,+---+ana, ,+aia, .

Solution by Mohammed Aassila, Strasbourg, France.

We prove the result by induction on n. For n = 2, we have equality.
The case n = 3 will be needed below. For n = 3, we have to show that

4 4 4 4 4 4
aya, + aza; + aza] > azaj + aza, + aja;.

This is true, since

4 4 4 4 4 4
aa, + azag + aza; — aza; — aza, — ai1dag

= %(az — (1,1)((1,3 —_ 0@)((13 — (11)
[(ar + az2)? + (az + az)® + (as + a1)2] > 0.
Assume that the claim is true for n — 1, and let us prove it for n.

By applying the induction hypothesis, we find that it is sufficient to prove
that

an_laffl —+ ana‘l1 — an_la‘f > anai_l + alai — alaffl_l ,
which is the case n = 3.
2. Suppose that n is a natural number. The n-tuple (a@1,asz,...,a,) is
said to be good, if a; + as + - -+ + a,, = 2n and furthermore, no subset of
{ai, ..., a,} has a sum equal to n. Find all good n—tuples.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

First note that the problem is not clear. Since the a;’s are not assumed
to be (positive) integers, there exist an infinite number of good n—tuples.
Moreover, the notation {a4, ..., a,} is ambiguous because it supposes that
the a;’s are pairwise distinct. If this is the case, and if the a;’s are positive
integers, there will be no good n—tuples for n > 1.

Following [1], we will assume that the a;’s are positive integers and
that “for every k € {1, ..., n}, no k of the n integers add up to n.”

Clearly, the only good 1-tuple is (2). The good 2-tuples are (1, 3) and
(3,1), and the good 3-tuples are (2,2, 2) and all permutations of (1,1, 4).

We will prove by induction on n that, if a = (a1,a2,...,a,) is a
good n-tuple with a; < a2 < --- < ay, then either a = (2,2,...,2) or
a=(1,1,...,1,n+1).
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The result is true for n € {1, 2, 3}. Suppose that the result holds for
n — 1, for some n > 4. Let a = (a1,as2,...,a,) be a good n—tuple with
a1 < az <--- < a,. Since a is good, we have >  a; = 2n, which implies

=1

that the average of the a;'s is 2. If either a; > 2 or a,, < 2, then we must
have a; = a; = .-+ = a,, = 2. Therefore, we may assume that a; = 1 and
a, > 3.

Let j = max{i | a; = 1}. Then1 < j < n. Define the (n—1)-tuple
a’ as follows:

a

ENEN

= Qi1 fOI"i?ﬁj,

a = aj+1—1.

QLS

n—1
Note that1 < af <a), <:.-<a/ _, and Z a, =2(n —1).

=1
Now suppose that a’ is not good. Then there exists a subset
EC{1,2,..., n—1} with E # 0, such that }" a; =mn — 1. We consider
i€EE
two cases:
Casel. j ¢ E.

Define E = {1} U{i+1|i € E}. Then
Zai = a1+Zai+1 = l—l—Zag =14n—-1=mn.
icE i€E i€E
Case 2. j € E.
Define E = {i +1| i € E}. Then

Zai = Zai-',-l = (a;+1)+ Z a; = 1+Za§ =n.

icE i€E i€ E\{s} i€E
In either case we have contradicted the hypothesis that a is good. Therefore,
a’ is good.
By the induction hypothesis, we have either «’ = (1,1,...,n) or
a =(2,2,...,2). Buta’ = (2,2,...,2) is not possible, since this would
imply that ¢ = (1,3,2,...,2), which does not have a; < as. Therefore,
a = (1,1,...,1,n). Thena = (1,1,...,2,n) ora = (1,1,...,1,n 4+ 1).
Obviously (1,1,...,2,n) is not good; hence a = (1,1,...,1,n 4+ 1).
Thus, ¢ = (1,1,...,1,n+ 1) ora = (2,2,...,2), and the induction

is complete.

It follows easily that the good n-tuples are:

(a) those obtained by a permutation of (1,1,...,1,n + 1);
) (2,2,...,2), if nis odd.
Reference:

[1] Mathematical Contests 1998-1999: Olympiad Problems and Solutions
from around the World, edited by T. Andreescu and Z. Feng, MAA.
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3. Let I be the incentre of the triangle ABC and AT meet the circumcircle
of ABC at point D. Denote the foot of perpendiculars dropped from I on
IE + IF = 1 AD, find the value of /ZBAC.

Solved by Christopher ]. Bradley, Bristol, UK. Remark by Toshio Seimiya,
Kawasaki, Japan.

This is problem 2280 [1997 : 481; 1998 : 516].

&4 1et ABC be a triangle with BC > CA > AB. Select points D on BC
and F on the extension of AB such that BD = BE = AC. The circumcircle
of BED intersects AC at point P and BP meets the circumcircle of ABC
at point Q. Show that AQ + CQ = BP.

Solved by Christopher ]. Bradley, Bristol, UK. Remark by Toshio Seimiya,
Kawasaki, Japan

This is problem 1881 [1993 : 264; 1994 : 209].
5. Suppose that n is a positive integer and d; < d» < ds < d4 are

the four smallest positive integers dividing . Find all integers n satisfying
n=d3?+dZ+d:+d3.

Solved by Mohammed Aassila, Strasbourg, France; and Pierre Bornsztein,
Maisons-Laffitte, France. We give Aassila’s write-up.

Ifnisodd, thend? +d2 +d2+d3=14+1+1+1= 0 (mod 4),
and we cannot have n = d? + d2 + d2 + d3. Thus, we can assume that 2
divides n. Then d; = 1 and d, = 2, and hence,

n=1+0+d2+d> #Z 0 (mod 4) .

Thus, 4 t n.

Hence, (dla d27 ds, d4) = (1a 2, p, q) or (d17 da, d33 d4) = (17 2, p, 2p)
for some odd primes p, g. In the first case, n = 3 (mod 4), a contradiction.
Thus, n = 5(1 + p?) and 5 | n. Therefore, p = d3 = 5 and n = 130.

6. Suppose that A = {a4, a2, ..., an} and B = {by, bz, ..., b, } are two
0/1 sequences. The distance of A from B is defined to be the number of ¢
for which a; # b; (1 < i < n) and is denoted by d(A, B).

Suppose that A, B, C are three 0/1 sequences and
d(A,B) = d(A,C) = d(B,C) = 4.
(a) Prove that § is an even number.
(b) Prove that there exists a 0/1 sequence D such that

d(D,A) = d(D,B) = d(D,C) = %5.
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Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give Bataille’s solution.

We denote by N(«) the number of 1's in any 0/1 sequence a.

fX ={z1,x2,...,zn}and Y = {y1, y2, ..., yn } are 0/1 sequences,
let X 4+ Y be the 0/1 sequence {x; + y1, 2 + Y2, ..., Tn + yn}, Where
addition is performed modulo 2. Clearly, d(X,Y) = N(X +Y). Let k be
the number of indices ¢ for which z; = y; = 1. Then z; = 1, y; = 0 for
N(X) — k indices, and =; = 0, y; = 1 for N(Y) — k indices. Therefore,
d(X,Y)=N(X+Y)=N(X)+ N(Y) — 2k.

Suppose now that A, B, C are 0/1 sequences with

d(A,B) = d(A,C) = d(B,C) = 6.

Let m be the number of indices ¢ such that a; + b; = b; + ¢; = 1. On the
one hand,

N((A+B)+(B+C)) = N(A+C) = d(A,C) = 6.
On the other hand,
N((A+B)+(B+C)) = N(A+B)+N(B+C)—2m
= d(A,B)+d(B,C)—2m = 2§ —2m.

Thus, § = 2(6 — m), and (a) is proved. In addition, we see that %6 =m.
Now, consider D = {di, d2, ..., d,} defined by the following rule:
d; = 1if N(a;,b;,¢c;) > 2, and d; = 0 otherwise (for 1 < i < n).
In order to obtain d(D, B), we observe that

e if 7 is such that b; = 0, then d; = 0 as well, unless a; = ¢; = 1;
e if 7 is such that b; = 1, then d; = 1 as well, unless a; = ¢; = 0.

We have d; # b; exactly when a; + b; = b; + ¢; = 1. Thus, the number

of indices such that d; # b; is m = 6. This yields d(D,B) = 14. By

symmetry, d(D,C) = 16 = d(D, A), and (b) is proved.
—_—_— N~ S O ————

Next are solutions to problems of the Second Round of the 16" Iranian
Mathematical Olympiad 1998-1999 given [2001 : 486 .

1. Define the sequence {x;}2, by o = 0 and,
3" —1

Ty = Tp_1-+ 5 ifn=3"13k+1),
3" +1
Ty = Tpo1— ;_ , ifn=3"13k+2),

where k and r are integers. Prove that every integer occurs exactly once in
this sequence.
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Solved by Mohammed Aassila, Strasbourg, France; and Pierre Bornsztein,
Maisons-Laffitte, France. We give Bornsztein’s solution.

2 .
Lemma. If n = >  «;3"is the ternary expansion of a non-negative integer n,

1=0
Lpn = 231_231’ (1)

i€Un €T,

then

where U,, and T,, are the sets of values of the index 7 such that a; = 1 and
o; = 2, respectively.

Proof. We use induction on nn. Equation (1) is clearly true for n € {0, 1}. Let
n > 1 be fixed, and let n = f: ;3" be the ternary expansion of n. Suppose
that (1) holds for 7. =
Casel. a9 = 0.

Thenn +1 =1+ Epj ;3% = 3°(3k + 1), for some integer k. Hence,

1=1

1_
3 1 =z, +1. We have

Tn4+1 = Tn +

Tpy1 = (Z 3 — Z3">+1 = <Z 3i+3°>— >3

€U, 1€T, 1€U, 1€T,
- Yoy
i€Up41 i€T 41

which proves the result in this case.
Case 2. a9 = 1.
2 .
Thenn +1 =2+ ) ;3" = 3°(3k + 2), for some integer k. Hence,

=1
3t +1
Tptl = Ty — ;_ = x,, — 2. We have

Ty = (Z 3i—Z3">—2= <Z 3i—3°>—<23i+3°>

i€U, i€Ty, €U, 1€Ty,
= Y-y
ieUﬂ""l ieTn+1

which proves the result in this case.

Case 3. a9 = 2.
Define a1 = 0. Lett = min{é | a; # 2}. Then1 <t < p+ 1.

We have
t—1
n=2» 3+) a3 =3 -14+) a3,
=0 >t >t
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and

t—1
T, o= » 3—) 3 = Y 3 - ) 3 -_>"3
1=0

i€Uy, i€T), i€Uy, i€TR
>t
; ; 3 —1
= 3" — 3" — .
2 8-> ;
’LeUn 1€Tn

>t
Thenn+1 = 3"+ > ;3" = 3t(83k +a; + 1), for some integer k. This leads
i>t
to two subcases:

Subcase 3(a). a; = 0.

t+1
Then n + 1 = 3*(3k + 1), and hence, z,, 11 = =, + 3271 Thus,
i i 3t—1 3ttt 1
Tnt1 = <Z3 _‘23_ 2 >+ 2
i€U, i€Tp

i>t

- (Tose)-xe - Y uo Y
1€U,, i€Tn iEU.,,_+1 'iETn+1
i>t
and the result holds in this case.
Subcase 3(b). oy = 1.

Then n + 1 = 3*(3k + 2), and hence, z,,+1 = ©,, —

; . 3t —1 3ttt 41
A oL o

€. i

= (Zgi—3t>—<23i+3t> = > 3- > 3,

i€Un ’fg;ﬂ 1€Unp11 €T

gt+1 +1

3 . Thus,

and the result holds in this case.

Thus, in every case we have the desired expression for x,,4 1, which ends
the induction and proves the lemma.

Let p be a fixed positive integer, and let E,, = {0, 1, ..., 3?71 —1} and
grtt 1 | .
F, = {—T, ...,—1,0,1,..., T} It is well known that every

p .
integer n € E, can be written in a unique way in the formn = ) «;3%,
=0

where a; € {0, 1, 2} for each 7. This is just the ternary expansion of n.
Furthermore, every integer m € F), can be written in a unique way in the

p .
formm = )" 3,37, where 8; € {—1, 0, 1} for each j (see [2000 : 402-403]).

j=0
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Let f, : E, — F, be the function defined by

p p
Ip <Z ai3i> = > B;3,
1=0 j=0

where 8; = «; if a; # 2, and 8; = —1 if a; = 2. The function f, is clearly
injective, and since |E,| = 3P = |F,|, we deduce that f, is bijective from
E, onto F,. The lemma implies that f,(n) = z,, for eachn € E,,.

Let k be an integer. There exists a positive integer p such that k € F,,.
Then, from above, there exists an integer n € E,, such that k = f,(n) = x,.
It follows that every integer occurs in the sequence {x,}.

Now suppose that there are two non-negative integers m and n such
that x,,, = z,,. There exists a positive integer p such that m and n are both
in E,. Since f, is injective, we have m = n. Thus, an integer cannot occur
more than once in the sequence, and we are done.

2. Suppose that n(r) denotes the number of points with integer coordinates
on a circle of radius » > 1. Prove that,

n(r) < 6Vmr?.

Solved by Mohammed Aassila, Strasbourg, France; and Pierre Bornsztein,
Maisons-Laffitte, France. We give Aassila’s write-up.

If n < 8, then, since + > 1 and 67w > 8, we have n < 6V/7r2,
as required. Now suppose that for some » > 1 we have n > 8. Let the
points with integer coordinates that lie on the circle be Py, P, ..., P,, in

_ — —
counterclockwise order. Since P, P; + PPy, + ... + P, P, = 4w, one of the
arcs @ is at most 47 /n. The triangle P; P; 1 P; o is inscribed in an arc
of angle at most 47 /n.

To simplify the notation, wri/tg\ A, B, C in place of P;, P11, Piyo,
respectively. Let 6 = ACandt = AB. Then0 <t < 6 < 4r/n, and

2rsin ) (2rsin (27' sin u)
[ABC] = LbC _ ( 2)( 2) 2
4r 4r
< o2 (E) (g) (0—1:) _ r20t(0 — t)
- 2 2 2 4
20 (g)z _ r203 < 72 (%’)3 _ 47273
- 4 16 — 16 - n3

Thanks to Pick’s Theorem, we know that [ABC] > 1. Therefore,

1 4r2g3

2 — n3 '’

n < V8r2md = 2xVr?2 < 6Vnr2.
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3. Suppose that ABCDEF is a convex hexagon with AB = BC,
CD = DE, and EF = FA. Prove that

BC DE FA S 3
BE DA FC — 2°

Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Toshio Seimiya,
Kawasaki, Japan. We give Seimiya’s solution.

We put AC = a, CE = b, and AE = c. By the well-known
generalization of Ptolemy’s Theorem for quadrilateral ABCE, we have

AC-BE < AB-CE+ BC-AE = BC(CE + AE);

thatis, a - BE < BC(b + c¢). Hence,

BC a
_— >
BE — b+ec
Similarly,
DE FA c
——— and — > .
DA — c+a FC — a+b
Thus,
BC_+_DE+FA> a n b n c )
BE DA FC — b4+c c+a a+b’

By the AM-GM Inequality, we have
(1+1+1)>331 1 1 @
b+ec c+a a+b/) — b+c ¢c+a a—+bdb

and
(b+e)+(c+a)+(a+b) > 3Y(b+c)(c+a)(atb);
that is,

a+b+c > g\a/(b—l—c)(c—l—a)(a—l—b); 3)
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Multiplying (2) by (3), we get

a+b+ec a+b+ec a+b+ec >
b+ec c+a a+b -

which simplifies to

a b c

b—|—c+ c+a+a+b -
Finally, from (1) and (4),

@

N W

BC DE FA 3
> s
BE DA FC 2

4 Find all functions f : R — R satisfying,

f(f@) +y) = f(@®—y) +4f(2)y,
for all real numbers z, y € R.

Solved by Mohammed Aassila, Strasbourg, France; Michel Bataille, Rouen,
France; and Pierre Bornsztein, Maisons-Laffitte, France. We give Bataille’s
solution.

The functions = — 0 and = — =2 are clearly solutions. We now show
that there is no other solution.
Suppose f : R — R satisfies

fF(f@) +y) = f(@® —y) +4f(x)y M

forall z, y € R. Let a = f(0).
Taking x = 0 in (1) gives

fla+y) = f(—y) +4ay @)
for all y. In (2) , we first take y = 0 to get f(a) = a, then y = —a to get
a = a — 4a?. It follows that @ = 0. Then, from (2), f is an even function.
Comparing the results of the substitutions y = —f(z) and y = =2 in (1)

easily leads to 4(f(a:))2 = 4x? f(x). Thus, f(x) = 0 or f(x) = x2.

Assume now that there exists ¢ such that f(xzo) # 0. Then z¢o # 0
and f(zo) = x2. Since f is even, we may suppose that o > 0. Let = be any
non-zero real number. By (1) with y = —x(, we obtain

f(f(a:) - 3»'0) = f(z® 4+ x0) — 4f(x)x0o .
If f(z) = 0, then
F@? +a0) = f(—wo) = flmo) = a2 # 0.
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This implies that f(z? + zo) = (x® + @0)?, and thus, (z? + z0)? = 2.
This is not possible, since zo > 0 and = # 0. Therefore, f(z) = x2.
Thus, f(z) = 0 for all z or f(x) = =2 for all z.

5. In triangle ABC, the angle bisector of ZBAC meets BC at point D.
Suppose that T is the circle which is tangent to BC at D and passes through
the point A. Let M be the second point of intersection of I' and AC and
BM meets the circle at P. Prove that AP is a median of triangle ABD.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain;
Christopher ]. Bradley, Bristol, UK; and Toshio Seimiya, Kawasaki, ]Japan.
We give Amengual’s solution.

A

B Q D (&

Let N be the second point of intersection of I' and AB, and let AP
meet BC at Q. Recalling that the angle between a tangent and a chord is
equal to the angle subtended by the chord at a point on the circumference
on the opposite side of the chord, we get /M DC = Z/CAD = %AA. Then

/ADM = LADC - /MDC
= (180° — ZCAD — /DCA) — /MDC
= (180° —1/ZA—/C)— ;ZA
180° — LA — /C = /B.

Also, ZADM = ZANM, since these angles are subtended by the
same arc of I'. Thus, ZANM = /B (Which shows that NM is parallel
to BC). Hence, /QPB = /APM = Z/ANM = /B. Since we also have
/BQP = /BQA, the triangles BPQ and ABQ are similar. Then, from the
proportional sides, we get

BQ QP

QA  BQ’
giving BQ? = QP - QA. We also have QP - QA = QD? (the power of the
point Q with respect to T'). Hence BQ = QD, establishing AP as a median
of AABD.
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6. Suppose that ABC is a triangle. If we paint the points of the plane in red
and green, prove that either there exist two red points which are one unit
apart or three green points forming a triangle equal to ABC.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

With no loss of generality, we may suppose that there exists at least one
red point (if not, the conclusion holds trivially) and that the sides of ABC
have lengths a, b, cwitha < band a < c.

Assume, for the purpose of contradiction, that there exist neither two
red points which are one unit apart nor three green points forming a triangle
equal to ABC.

Suppose that there are two red points M and N such that M N = a.
Let P be such that triangle PM N is equal to triangle ABC. Let I'p, Ty,
and I'y be the circles of radius 1 centred at P, M, and N, respectively.
Then I'j; and I'; are entirely green. If I'p is entirely red, then, since I'p
has radius 1, there are two red points on I'p which are one unit apart—a
contradiction. Therefore, there must be a green point on I'p, say X. From
M and N, using the translation with vector PX , We construct green points
Y on T'j; and Z on 'y such that XY Z is a green triangle equal to ABC,
giving a contradiction.

Thus, there do not exist red points M and N such that M N = a.

Now, let 2 be a red point, and let Cq be the circle with radius a and
centre . From above, Cq is entirely green. Let U € Cq. Let V € Cq be
a point such that UV = a. (Thus, ZUQV = % (mod 27).) Since U and V
both lie on Cq, they are both green. Since a = min{a, b, ¢}, there exists a
point T outside Cq such that the triangle TUV is equal to ABC. Clearly,
T must be red (if not, we would have a green triangle equal to ABC).

When we rotate U on Cgq the set of corresponding points 7' is a circle
I" with centre Q and radius » > a. Since I is entirely red, we may find two
red points on it, say M and N, such that M N = q, a final contradiction.

Remark. More generally, one can prove ([1]): Given {A, B, C, D} any
arbitrary configuration of four points in the plane, and given any colouring
of the plane with two colours, say red and green, with no two red points
at distance 1 from each other, there exists a green configuration which is
congruent to {A, B, C, D}.

Reference

[1] R.]Juhasz, Ramsey Type Theorems in the Plane, Journal of Combinatorial
Theory, Series A, 27 (1979), p. 152-160.

—_—_— N~ S O ————
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Next we turn to solutions for problems of the Third Round of the 16t
Iranian Mathematical Olypiad 1998-1999 given [2001 : 487].

3. Suppose that Cy, ..., C, are circles of radius one in the plane such that
no two of them are tangent, and the subset of the plane, formed by the union
of these circles, is connected. If S = {C; N C; | 1 < i < j < n}, prove that
S| > n.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

For each ¢, denote by n(C;) the number of elements of S which belong
to C;. Since the union of the circles is connected, we have n(C;) > 0. For
each M € S, denote by n(M) the number of circles C; which contain M.
Thus, n(M) > 2.

Let M € S, and let C; be any of the given unit circles such that M € C;.
Since there is no tangency, each of the n(M) — 1 other circles which contain
M must intersect C; in another point. These points are pairwise distinct,
because, for any two given points of the plane, there are at most two unit
circles which contain the two of them. Thus, in addition to M, the circle C;
contains at least n(M) — 1 other elements of S. It follows that, for each
M € S and each circle C; such that M € C;, we have n(M) < n(C;).

Let N (MX’:C” n (G’
C; is one of the given unit circles and M € S N C;. We have

vex( x

where the sum is for the pairs (M, C;) such that

1 1
n(ci)> = L@y =

On the other hand, since n(M) < n(C;), we have

1 1
N < —
S Xonon T, (§ n<M>>
1
_ n(M) = Y1 = 8]
2. MM G = X

Thus, |S| > n.

5. Suppose that ABCDETF is a convex hexagon with /B+/D+ /F = 360°

and

AB CD EF_l
BC DE FA

Prove that
BC AF FD

—— .= .= 1

CA EF DB
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Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; and Toshio Seimiya, Kawasaki, Japan. We give Seimiya’s
solution.

Since /B + /D + /F = 360°, we get
A+ /C + ZE = 360°. ¢))

We construct A BAT directly similar to A BC D, as shown in the figure. Then
/CBA = /DBT and BC/AB = DB/BT. Therefore, ABCA ~ ABDT.
Hence,

BC BD

_— = __, 2
CA DT @)
Since ABCD ~ ANABAT, we have
AB AT
- = . 3)
BC CD
. AB CD EF _ AT CD EF _
Since B6 DE FA - 1, from(3)weseetha\tC—D-ﬁ-ﬂ =1;
that is,
FA EF
AT ~ DE’ @
From (1), we have /BCD + /BAF + /FED = 360°. Since

/BAT 4+ /BAF + /FAT = 360°, we find that /FAT = /FED. This
together with (4) implies that AFAT ~ AFED. Then AFAE ~ AFTD,
which implies that

AFE TD

EF - DF ®)

From (2) and (5) we obtain

BC AE BD TD BD

CA EF DT DF  DF’

and hence,
BC AFE FD

i
CA EF DB
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6. Suppose that r, ..., r, are real numbers. Prove that there exists
IC{1,2,...,n}suchthat I meets {7, 7+ 1, ¢ + 2} in at least one and at
most two elements, for 1 <7 < n — 2 and

> or| > %Z |73l -
i=1

el

Solution by Mohammed Aassila, Strasbourg, France.
n
Letr = Y |r;]. Fori =0, 1, 2, define

1=1

S; = Z T and t; = Z Tj.

;>0 ;<0
j=i (mod 3) j=i (mod 3)

Then we have r = sg + s1 + so — tg — t1 — t2, and
2r = (so+ s1)+ (s1+ s2)+ (s2 + so)
—(to+t1) — (t1 +t2) — (t2 + to) -

Therefore, there exist 4; and i, with i; # i, such that s;, + s;, > ir or

3
ti, +ti, < —%r. Assume, without loss of generality, that

Siy +8i, > gr o and sy, 485, > —(t, +ti,) .

Then s;, + s;, + ti, + t;, > 0, and we have

-

(84, + 85, +tiy) + (85, + 54, +1i,) > 84, + 85, > 3

Hence, one of s;, + s;, + t;, and s;, + s;, + t;, must be at least %r.

_—_—m NS —e————

To complete this number of the Corner we look at solutions from our
readers to problems of the 1999 Chinese Mathematical Olympiad given
[2001 : 488-489].

1. In acute triangle AABC, ZACB > ZABC'. Point D is on BC such that
ZADB is obtuse. Let H be the orthocentre of AABD. Suppose point F is
inside AABC and on the circumcircle of AABD. Prove that point F is the
orthocentre of AABC if and only if HD is parallel to CF and H is on the
circumcircle of AABC.
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Solved by Christopher ]. Bradley, Bristol, UK; and Toshio Seimiya, Kawasaki,
Japan. We give Seimiya’s write-up.

A

B>l\ c
D H

Figure 1

First let us suppose that F is the orthocentre of A ABC (see Figure 1).
Then CF | AB. As H is the orthocentre of AABD, we have HD 1 AB.
Thus, HD || CF.

Since A, B, D, and F are concyclic,

/AFB = /ADB. (1)

As F and H are orthocentres of AABC and A ABD, respectively, we have
AF | BC, BF 1 AC, AD 1 BH, and BD 1 AH. It follows that
/AFB + ZACB = 180° and ZADB + ZAHB = 180°. Then, using (1),
/ACB = /AHB. Therefore A, B, C, and H are concyclic.

Now we consider the converse (see Figure 2). Assume that HD || CF
and that A, B, C, and H are concyclic. Since A, B, D, and F are concyclic,
/AFB = Z/ADB. Since A, B, C, and H are concyclic, /ACB = ZAHB.
As H is the orthocentre of AABD, we have ZADB 4+ ZAHB = 180°.
Thus, ZAFB + /ACB = 180°.

Let G be the reflection of F through AB. Then ZAGB = Z/AFB and
/ABG = Z/ABF'. Thus,

/AGB + /ACB = /AFB + /ZACB = 180°.

Hence, A, G, B, and C are concyclic.
Since CF || HD and HD | AB, we have CF 1 AB. Then, since
FG 1 AB, the points C, F, and G must be collinear. Hence,

/ACF = LACG = ZABG = /ABF.

Since CF 1 AB, we have ZACF + ZBAC = 90°, which gives us
/ABF + /BAC = 90°. Then BF 1 AC. Thus, F is the orthocentre
of AABC.
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-
B %E V c
D H
Figure 2

4. 1et m be a given integer. Prove that there exist integers a, b, and k such
that both a, b are not divisible by 2, £ > 0, and

2m = a'® 4+ b%? + k- 21999

Solution by Mohammed Aassila, Strasbourg, France.

Let n be a positive integer, and let r» be an odd positive integer. For
any odd positive integers = and y

" = y" (mod 2™) — z = y (mod 2") ,

because
xr" — ,yr — (:13 _ y) (mr—l + mr—Zy 4+ 4+ yr—l)

and x" ' 42" 2y + ... +y"1is odd. It follows that the set of congruence
classes of 1", 3", 5", ..., (2™ — 1)" modulo 2™ is the same as the set of
congruence classesof 1, 3, 5, ..., 2" —1, which is the set of all odd congruence
classes modulo 2™.

Taking » = 19 and n = 1999, we see that there exists an odd number
ao such that 2m — 1 = a}? (mod 2'999). Choose a = a¢ (mod 2'999) to be
sufficiently negative so that 2m — 1 — a'® > 0. Then a solution is

2m — 1 — al®
(aa b, k) - a,l, W

_—_—m NS —e————

That completes this number of the Corner. We are in Olympiad season.
Send me your nice solutions and generalizations as well as Olympiads.

Y ey WS S= W G o
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BOOK REVIEW

John Grant McLoughlin

Senior Mathematical Challenge: The UK National Mathematics Contest
1988-1996

by Tony Gardiner, published by Cambridge University Press, 2002

ISBN 0-521-66567-1, softcover, 180 pages, £13.50.

Reviewed by Ralph T. Mason, University of Manitoba, Winnipeg, MB.

A first resource for high school mathematics contest preparation?

Perhaps the outstanding feature of this collection of high school
mathematics contest questions is its versatility. The core of the book is
nine years of mathematics contests from the United Kingdom. Each contest
provides 25 multiple-choice questions, generally arranged from easier to
more difficult. As well as answers, full solutions are provided for all the
questions.

Of course, a high school teacher could easily use the mathematics
contests as practice opportunities for interested and capable students. The
full solutions mean that the teacher need not fear that a question might
expose one of the gaps in background we all have to varying degrees.
Alternatively, the solutions are well enough written to be readable by
students, meaning that a student who has read a solution could lead the
discussion of any question and its solutions.

Better still, these contest questions and solutions could be used by any
student preparing independently for contests. When a student has solved a
question, there is satisfaction and encouragement in reading a comprehen-
sible and explanatory solution. When a question has stymied a student, the
student will appreciate that the solutions describe an approach to solving
the question, rather than only providing a rationale for the answer. Often,
the mathematical foundation of a solution is explicitly stated. (For example,
the solution to Question 1 of the 1996 test, which involves expressions with
integer powers being odd or even, states “Odd times odd is odd; so any
power of an odd number is odd.”) As a result, the independent reader can
distinguish between mathematical background deficits and difficulties due to
applying the mathematics to the particular question.

Many solutions include explicit advice to readers about how to
approach questions, backed up by the details a reader might need when
looking to expand her/his repertoire of skills. A good example is question 4
from the 1996 test, which technically could be solved inefficiently by using
arithmetic. The solution first states, “You must resist the temptation to
‘multiply out’. Instead, use elementary algebra to find effortless ways of
calculating each option.” Then, the solution includes algebraic approaches
to calculating each of the question’s five choices, not just the right one. A
vertical bar in the margin identifies all insertions of advice and background
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content, making them easy to find or skip over, depending upon the reader’s
purpose.

The book has two other elements, both of supplemental value. The first
element begins with a brief discussion of the qualities of, and the
difficulty of finding, books of mathematics and mathematics problems
suitable for interested high school students. Two subdivided lists of briefly
annotated resources follow. The first list, with 27 entries, is “Books of
problems and puzzles on a level similar to those in this book.” The second,
with 25 entries, is “Books which explore related mathematical content in a
readable way.” As the author mentions, neither list is exhaustive, providing
more of a starting point than a full bibliography. The lists’ best features may
be their exclusivity: the author has excluded books that are better suited for
more mathematically capable audiences.

The second additional element is ten sets each containing ten more
multiple-choice questions. These questions have answers provided, but no
solutions. At first, I considered this to be a drawback of the book. However,
I now recognize that these questions provide the leader of a math contest
club with a different opportunity. The 100 questions are not just further
practice opportunities; they provide a chance for students to write solutions
that could be useful to peers, a chance to build on the good examples the
author provides in the 225 solutions provided in the main section of the book.

Generally, the book’s questions and references survive relocation to
North America quite well. The British monetary pound is now a cents-based
system, and measurements such as the earth’s circumference or the speed of a
train tend to be in metric units. However, there are a scant few questions that
could delight North American readers because they are from an unfamiliar
context. One question, for instance (Short Paper 2, question 3), asks for the
smallest number of coins needed to be able to make every amount from 1p
up to £1. North American readers might wonder what difference in coinage
results in the answer being one less than the number of coins needed to make
any amount of change from 1 cent to $1.

I consider this book to be a valuable addition to the resources of any
teacher preparing high school students for mathematics contests. As well, its
potential for the use of a student operating independently makes it an ideal
addition to high school libraries. Its best usage, however, one that takes
advantage of all of its features, would be by a teacher who is just beginning
to build her/his resources for math contest leadership. Such a teacher could
rely on this book as a primary resource before building a richer repertoire.

B SN D W
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The Monty Hall Problem and
Napier’s Number

Fabio Zucca

1. The original Monty Hall problem

The well-known Monty Hall problem is one of the best examples
in probability theory of a game where common sense often results in a
wrong decision. The aim of this paper is to introduce and analyze some
generalizations and determine the best strategy and the probability of
winning the prize for these generalizations.

The original Monty Hall problem (named after one of the creators
of a popular U.S. game show in the 1970’s called “Let’s Make A Deal”)
has the following basic rules: a prize is hidden behind one of three doors.
The contestant chooses a door without its being opened. The host opens one
of the remaining two doors without revealing the prize. The contestant is
then asked if he wants to change his original choice.

If he does not change, then his probability of winning is 1/3, since
he had one chance in three originally of picking the right door. If he does
change, then his probability of winning is 2/3, since there are just these two
possibilities and the total sum of the probabilities must equal 1. Often one
hears the wrong answer that the probability in both cases is 1/2, since the
prize is behind one of two doors.

2. A generalization of the Monty Hall problem

Consider n indistinguishable unopened boxes (n > 3), one of them
containing a prize, the others being empty. The rules are:

Step 1. The contestant chooses an unopened box.

Step 2. If there is only one unopened box besides the one chosen by the
contestant, the chosen box is opened. Otherwise, the host opens at
random one of the empty unopened boxes that was not chosen. Then
the remaining unopened boxes are shuffled (the contestant does not
watch this operation).

Step 3. The host asks if the contestant wants to choose a different unopened
box. If yes, we go to Step 1. If no, we go to Step 2.

We say that we have a winning ending if the box chosen by the contestant,
when opened, contains the prize.

Copyright © 2004 Canadian Mathematical Society
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Represent the strategy of the contestant by an (n — 2)-dimensional
vector € = (T1,T2,...,Tn_2) € {0,1}"~2, where x; = 1 if and only if the
contestant changes his choice of box after 2 boxes have been opened. Denote
by pa,n (i) (or simply p(¢)) the probability of the event “the box chosen by
the contestant before carrying out the instruction x; contains the prize”, and
denote that box by B;. Let p,.,(n — 1) be the probability that the final box
chosen, B,,_1, contains the prize. This is the probability of a winning ending.

Proposition 1 The sequence {p, . (i)}—, satisfies p,(1) = 1/n and, for
i=1,2...,n—2,

T; (1 - pm,n(i))

—1—1
Proof. Denote by 3; the event “the prize is in B;”. Clearly, p, (1) = 1/n.
If 2; = 1, then p(i + 1) = p(Bi11185) - p(B5) = —— P and if 2; = o,
then p(i + 1) = p(Bi+1) = p(B:) = p(3). Equation (1) follows.

Pzn(i+1) = + (1 — 24)Pa,n (1) . ey

3. The best and worst strategies

In the original game, the best strategy was to change the door and the
worst was to keep it. What are the corresponding strategies in the generalized
game? To formulate an answer we have to study the sequence {p.. (i)} "

Proposition 2 For any givenz =1, 2, ..., n — 1, we have
1 . i
- < < —.
n = pm,n(z) = 5 (2)
Proof. The claim follows by induction on ¢ with n fixed. If ¢ = 1, then this
is trivial. Suppose it is true for some ¢ € {1, 2, ..., n — 2}. Then
. r; Mm—1 1— x; 1
p(z+1)22n—i—1+ n ZE'
and
. ; -1 i
< % T _ )X
p(i+1) < n—1—1 n +@ mz)n
S DEHD -t =
n n n
We have used the fact that, fori =1, 2, ..., n—2, we have 71"_7;_11 < 441,

In particular, the probability of winning the prize (that is, pz »(n — 1))
always lies between 1/n and 1 —1/n. We will show that both of these values
can be attained by choosing appropriate (unique) strategies. See also [1].

Proposition 3 For any n > 3 the following equivalences hold:

Pom(n —1) = % — 2, =0,Vi=12...,n—2
n—1 0 Vi<n-—3,
Pzn(n —1) = = x; = .
1 2=n-—2.
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Proof. Consider the first statement. If z; = 0forall: =1, 2, ..., n—2, then
Pz,n(n—1) = 1/n follows from (1). We prove the converse by contradiction.
Let ¢o be the smallest value with x;, = 1. Then, by equation (1), we have
p(i0) > 1/n. Using Proposition 1, we have p(¢) > 1/n for any ¢ > 49, and
this contradicts the assumption that p(n — 1) = 1/n.

Now consider the second statement. If {x;} satisfies the conditions
on the right side, then p, ,(n — 1) = 1 — 1/n. Conversely, assume that
p(n—1)=(n—1)/n. fx,,_>=0,thenp(n—2) =p(n—1) = (n—-1)/n
by (1), and this contradicts (2). By (1), we have p(n — 2) = 1/n = p(1), and
this is only possible if z,,_3 =0= .- = x5 = x;.

Thus, if one follows the best strategy for this game, then the probability
of a winning ending approaches 1 as the number of boxes grows.
4. Another generalization, its best strategy, and e

We next consider what happens if we change the choice of box whenever
possible; thatis, z; = 1fori =1, 2, ..., n— 1. The probability of a winning
ending turns out to be related to Napier’s number e, as stated in the next
proposition.

Proposition 4 Letn >3 andz; =1,for:=1,2,..., n — 1. Then
n 1)3

pm,n(n - 1) Z ’

and lim pp,(n—1)=1—1/e.
n—>00

Proof. Define a function f.(z) = (1 — z)/r, for x € R and » > 0. Denote
by g,, the probability p; ,(n — 1) corresponding to the chosen strategy. Set
F, = fiofz0---0 f,_o. Proposition 1 implies that ¢,, = F,,(1/n). By
induction on n, it is easy to show that

r—Y , Va,y €R.

Fal@) = Faly) = (-1 (=0

Hence,

s = o (1) = B (s (1)) - 7o (1) £ 52 2)

Since g3 = 2/3, it follows that

(-1 2 TE (-1 1
et Z(a+1)' __1_;0 T

It is easy to see that this is the best strategy of the game if we modify
Step 3 to the following: if the contestant decides not to change boxes, then
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the game ends and the chosen box is opened. According to this additional
rule, the only strategies that are admitted are those for which x; = 1 for all
it < ip and xz; = 0 for all ¢ > iy, for some i € {1, 2, ..., n — 2}.

Proposition 5 The best strategyis x; = 1forallz =1, 2, ..., n — 2 and the

probability of a winning ending is 1 — 3 (—1)7 /5.
Jj=0

Proof. Observe that for any ¢, we have p(¢) > 1/(n — ). Hence, if z; = 1,

1 —p(@)(n —9)

—1—1

pi+1) = PO e > pli).

Since the game is over with probability p(2) if any =; = 0, the best strategy
isx = (1,1,...,1). Proposition 4 now yields the conclusion.

Remark: If the contestant is not allowed to choose a previously chosen box
(implying that n is odd), then the probability of a winning ending for the
best strategy is “surprisingly” related to the number w. See the paper by
Zorzi [2].

[ Editor’s remark: The reader can justify many of the arguments given above
by keeping in mind the following principle. When the host eliminates a box,
the remaining unchosen boxes “inherit” their probabilities, proportionally
divided among these boxes. For example, if the contestant chooses a box
and does not change until the last step, then its probability of containing
the prize is 1/n, while the other remaining box at the last step will have
probability (n — 1)/n, since it has inherited all the 1/n probabilities from
the n — 2 boxes that the host has eliminated together with its own 1/n
probability. ]
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PROBLEMS

Solutions to problems in this issue should arrive no later than 1 November
2004. An asterisk (x) after a number indicates that a problem was proposed without
a solution.

Each problem is given in English and French, the official languages of Canada.
In issues 1, 3, 5, and 7, English will precede French, and in issues 2, 4, 6, and 8§,
French will precede English. In the solutions section, the problem will be stated in
the language of the primary featured solution.

The editor thanks Jean-Marc Terrier and Martin Goldstein of the University of
Montreal for translations of the problems.

_—_—m NS —————
2926. Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

In circle T' with centre O and radius R, we have three parallel chords
A, Ay, B1Bs, and C1C>. Show that the orthocentres of the eight triangles
having vertices A;, B;, and Cy, (¢, j, k € {1, 2}) are collinear.

2927%. Proposed by Sefket Arslanagi¢, University of Sarajevo, Sarajevo,
Bosnia and Herzegovina.

Suppose that a, b and c are positive real numbers. Prove that

ad b3 3 3(ab + bc + ca)
+ + > .
b2 —bc+c2 c2—ca+a? a?2—ab+b2 — at+b+ec

2928. Proposed by Christopher J. Bradley, Bristol, UK.

Suppose that ABC is an equilateral triangle and that P is a point in
the plane of AABC. The perpendicular from P to BC meets AB at X, the
perpendicular from P to C A meets BC at Y, and the perpendicular from P
to AB meets CA at Z.

1. If P is in the interior of AABC, prove that [ XY Z] < [ABC].

2. If P lies on the circumcircle of ABC, prove that X, Y, and Z are
collinear.

2929. Proposed by Juan-Bosco Romero Marquez, Universidad de
Valladolid, Valladolid, Spain.

Suppose that AABC has /A = 90° and /B > /C. Let H be the
foot of the perpendicular from A to BC. The point B’ lies on BC and is
the mirror image of B in the line AH. Suppose that D is the foot of the
perpendicular from B’ to AC, that E is the foot of the perpendicular from D
to BC, that F is the foot of the perpendicular from B to AB’, and that G is
the foot of the perpendicular from F to BC. Prove that AH = DE + FG.
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2930. Proposed by José Luis Diaz-Barrero, Universitat Politécnica de
Catalunya, Barcelona, Spain.

Suppose that a, b, and c are positive real numbers. Prove that

1+1+1 27(ab+bc+ca)_2
2 b2 c? c a b
1 (1 1)2 (1 1)2 <1 1>2
> - [(=-= S—C) 4+ (===
- 3 a b b c c a

2931. Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

Given quadrilateral ABCD, let P, Q, R, S, M and N be the mid-
points of AB, BC, CD, DA, AC and BD, respectively. Suppose that
the diagonals AC and BD intersect at E. Let O be the point such that
quadrilateral NEMO is a parallelogram.

Prove that [OPAS] = [OQBP] = [ORCQ] = [OSDR] (where
[W XY Z] represents the area of quadrilateral WXY Z.)

2932. Proposed by Titu Zvonaru, Bucharest, Romania.

In AABC, suppose that the points M, N lie on the line segment BC,
the point P lies on the line segment C' A, and the point Q lies on the line
segment AB, such that M N PQ is a square. Suppose further that

AM AC + V2AB

AN ~ AB++V2AC

Characterize AABC.

2933. Proposed by Titu Zvonaru, Bucharest, Romania.

Prove, without the use of a calculator, that sin(40°) < \/g .

2934, Proposed by D.]. Smeenk, Zaltbommel, the Netherlands.

In A ABC with circumradius R, let AD, BE and CF be the altitudes.
Let P be any interior point of the triangle. The line through P parallel to
EF intersects the line AC at E, and the line AB at F;. The line through
P parallel to FD intersects the line AB at F, and the line BC at D,. The
line through P parallel to DE intersects the line BC at D3 and the line AC
at E3.

Show that

E1F1 COtA+F2D2 COtB+D3E3COtC = 2R.
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2935. Proposed by Titu Zvonaru, Bucharest, Romania.
Suppose that a, b, and c are positive real numbers which satisfy
a? 4+ b? + ¢ =1, and that n > 1 is a positive integer. Prove that
b 1)+
a c S (n+1) ‘

1—a"+1—b" 1—c* — n

2936. Proposed by Toshio Seimiya, Kawasaki, Japan.

Consider AABC with ZABC = 2/ACB and Z/BAC > 90°. Given
that the perpendicular to AC through C meets AB at D, prove that

1 1 2

AB BD  BC’

2937. Proposed by Todor Mitev, University of Rousse, Rousse, Bulgaria.

Suppose that x4, ..., x, (n > 2) are positive real numbers. Prove that

1 1 2
(m§++wi) <+...+> > %

2
x? + 112 x2 4+ xpae

2938. Proposed by Todor Mitev, University of Rousse, Rousse, Bulgaria.

Suppose that x4, ..., x,, « are positive real numbers. Prove that
@ (@ —a) (@n— @) > o+ YE T

b) /(@ —a)(@n—a) < at BT F I,

2926. Proposé par D.]. Smeenk, Zalthommel, Pays-Bas.

Dans un cercle T de centre O et de rayon R, on a trois cordes paralléles
A;A,, B; B, et C1C>. Montrer que les orthocentres des huit triangles ayant
pour sommets A;, Bj et Cy (3, j, k € {1, 2}) sont colinéaires.

2927%. Proposé par Sefket Arslanagié¢, Université de Sarajevo, Sarajevo,
Bosnie et Herzégovine.
Supposons que a, b et c sont des nombres réels positifs. Montrer que
a3 b3 c3 3(ab + bec + ca
+ + > ).
b2 —bc+c2 c2—ca+a? a? —ab+ b2 at+b+ec
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2928. Proposé par Christopher ]. Bradley, Bristol, GB.

Soit P un point dans le plan d'un triangle équilatéral ABC. La
perpendiculaire abaissée de P sur BC coupe AB en X, celle abaissée de
P sur CA coupe BC enY, et celle abaissée de P sur AB coupe CA en Z.

1. Montrer que [ XY Z] < [ABC] si P est a I'intérieur du triangle ABC.

2. Montrer que X, Y et Z sont colinéaires si P est situé sur le cercle
passant par les sommets de ABC.

2929. proposé par Juan-Bosco Romero Mirquez, Université de Valladolid,
Valladolid, Espagne.

Soit ABC un triangle rectangle d’hypoténuse BC et d’angle en B plus
grand que celui en C. Soit H le pied de la perpendiculaire abaissée de A sur
BC et B’ le symétrique de B par rapport a cette perpendiculaire. Désignons
respectivement par D, E, F et G les pieds des perpendiculaires abaissées
de B’ sur AC, de D sur BC, de B sur AB’ et de F sur BC. Montrer que
AH = DFE + FG.

2930. Proposé par José Luis Diaz-Barrero, Université Polytechnique de
Catalogne, Barcelone, Espagne.

Supposons que a, b, et ¢ sont des nombres réels positifs. Montrer que

1+1+1 27(ab+bc+ca)_2
a? b2 c? c a b

R GHR L

2931. Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Dans un quadrilatére donné ABC D, soit respectivement P, Q, R, S,
M et N les points milieux des segments AB, BC, CD, DA, AC et BD.
Supposons que les diagonales AC et BD se coupent en E. Soit O le point
tel que le quadrilatére N EMO soit un parallélogramme.

Montrer que [OPAS] = [OQBP] = [ORCQ] = [OSDR] (ou
[W XY Z] représente 'aire du quadrilatére W XY Z.)

2932. Proposé par Titu Zvonaru, Bucarest, Roumanie.

Dans un triangle ABC, on suppose que les points M, N sont sur le
coté BC, que le point P est sur le c6té C A et que le point Q est sur le co6té
AB, de telle sorte que M N PQ soit un carré. On suppose de plus que

AM AC + v/2AB

AN  AB+V2AC'
Que peut-on dire du triangle ABC?
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2933. Proposé par Titu Zvonaru, Bucarest, Roumanie.

Sans calculatrice, montrer que sin(40°) < \/g .

2934, Proposé par D.]. Smeenk, Zaltbommel, Pays-Bas.

Dans un triangle ABC dont le rayon du cercle circonscrit est R, soit
AD, BE et CF les hauteurs. Soit P un point quelconque a l'intérieur du
triangle. La paralléle 3 EF par P coupe la droite AC en E; et la droite AB
en Fy. La paralléle 3 FD par P coupe la droite AB en F; et la droite BC
en D-. La paralléle 3 DE par P coupe la droite BC en D3 et la droite AC
en FEgj.

Montrer que

E Ficot A+ FyD5cot B+ DzEzcotC = 2R.

2935. Proposé par Titu Zvonaru, Bucarest, Roumanie.

Supposons que a, b et c sont des nombres réels positifs satisfaisant
a? + b2 +c? =1, et que n > 1 est un entier positif. Montrer que

b 1)ttn
a c S (n+1) ‘

1—a™ 1-—-b" 1—c* — n

2936. Proposé par Toshio Seimiya, Kawasaki, Japon.

On donne un triangle ABC tel que I’angle ABC est le double de I’angle
ACB et que I'angle BAC soit supérieur a 90°. De plus, la perpendiculaire
a AC en C coupe AB en D. Montrer que

1 1 2

AB BD  BC'
2937. Proposé par Todor Mitev, Université de Rousse, Rousse, Bulgarie.

Supposons que x1, ..., £, (n > 2) sont des nombres réels positifs.
Montrer que

1 1 2
(m§++wi) <7+...+7> > %

2
z? + x11a 2 4+ xpxe

2938. Proposé par Todor Mitev, Université de Rousse, Rousse, Bulgarie.

Supposons que x, ..., T, « sont des nombres réels positifs. Montrer
que

(a) V(w1—a)...(xn_a) > a_’_m;
b) /(@ —a) - (@n—a) < at BT F I,

n
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to
consider for publication new solutions or new insights on past problems.

%

2778. [2002 : 457; 2003 : 414-415] Proposed by Mihaly Bencze, Brasov,
Romania.

Suppose that z # 1 is a complex number such that 2 = 1 (n > 1).
Prove that
(n+1)(2n+1)

— <
Inz — (n+2)| < o

|z —1)%.

Editor’s Remark. At the end of the featured solution to this problem, there
was a conjecture by Walther Janous that the best multiplier of |z — 1|2 on
the right side of the inequality would be

\/4n(n — 1) sin? (Z)+1

4 sin? (%)

We have received a proof of this conjecture.

Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

We are given that z = e?*™*/" for some k € {1, 2, ..., n — 1}. Thus,

2 2
lz =12 = (cos 2k _ 1) + (sin Zk—ﬂ-)
n n

and

2km

Inz — (n+2)| = \/((n—l)coszl:T —n)2—|— ((n—l)sinT)2

= \/(n—1)2-|—n2—2n(n—1)cos2kT7r

= \/1+2n(n—1) (l—cos%Tﬂ)

= \/1—|—4n(n—1)sin2kﬂ-.
n

Let a be a positive real number. Then |nz — (n + 2)| < a|z — 1|2
if and only if

k

16a? sin® I%r — 4n(n — 1) sin® % -1 > 0.
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By the quadratic formula, this is true if and only if

n(n — 1) + /n2(n — 1)2 + 4a2
8a?
1

2 <\/n2(n —1)2+4+4a? — n(n — 1)) .

. kT
sin? 2% >
n =

Since sin? ’%r > sinzg forall k € {1, 2, ..., n — 1}, the above
inequality is true for all K € {1, 2, ..., n — 1} if and only if it is true when
k = 1, in which case

1
2(n — 1)2 + 4a2 — -1) >
\/n (n ) + a n(n ) = 25in2 % ’

2
\/4n(n—1)sm 41
4sin? = '

B WSS L W

a

2826. [2003 : 174] Proposed by Bernardo Recamin Santos, Bogota,
Colombia.

Show that, for every sufficiently large integer n, it is possible to split
the integers 1, 2, ..., n into two disjoint subsets such that the sum of the
elements in one set equals the product of the elements in the other.

Essentially the same solution by Pierre Bornsztein, Maisons-Laffitte,
France; Christopher Bowen, Halandri, Greece; Con Amore Problem Group,
The Danish University of Education, Copenhagen, Denmark; Chip Curtis,
Missouri Southern State College, Joplin, MO, USA; Keith Ekblaw, Walla
Walla, WA, USA; Natalio H. Guersenzvaig, Universidad CAECE, Buenos Aires,
Argentina; Josh Guinn, student, Polk Community College, Winter Haven,
FL, USA; James Holton, student, Polk Community College, Winter Haven,
FL, USA; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; D. Kipp
Johnson, Beaverton, OR, USA; Gustavo Krimker, Universidad CAECE, Buenos
Aires, Argentina; Kee-Wai Lau, Hong Kong, China; Undine Leopold,
student, Ludwigsgymnasium, Koethen, Germany; David Loeffler, student,
Trinity College, Cambridge, UK; Gottfried Perz, Pestalozzigymnasium,
Graz, Austria; Robert P. Sealy, Mount Allison University, Sackville, NB;
Southwest Missouri State University Problem Solving Group, Springfield,
MO, USA; Mike Spivey, Samford University, Birmingam, AL, USA; Li Zhou,
Polk Community College, Winter Haven, FL, USA; and the proposer.

Recall that

LA n(n +1)
;z = =5
For odd n > 5,
e e ] (o= [CR I
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and for even n > 6,

Several solvers pointed out that a partition exists for n = 1 (using an empty product),
and n = 3; however, no partition is possible forn = 2 or n = 4.

Holton asks if the partition is unique. The proposer asks if the partition is unique for
infinitely many n.

——— | NS

2827. [2003:175, 314] Corrected. Proposed by José Luis Diaz-Barrero and
Juan José Egozcue, Universitat Politécnica de Catalunya, Barcelona, Spain.

Let n be a non-negative integer. Determine

Z tanh(2F)
1+ 2sinh?(2k)

k=0

[ Editor: The problem is stated above as it was intended by the proposers.
As first given in [2003 : 175], it contained two errors, only one of which was
corrected later [2003 : 314]. The editors wish to extend an apology to the
proposers and the readers for spoiling a very nice problem.]

Solution by the proposers.
We will prove that for any real number «,

Z": tanh(2*x)
1 + 2sinh?(2kz)

k=0

= tanh(2""'z) — tanh(x) . ¢))

It will then follow, by setting = 1, that the sum given in the problem is
tanh(2"*!) — tanh(1).

Foreachk =0, 1, 2, ..., we have
tanh(2*x) _ sinh(2*x)
1+ 2sinh®(2%2)  cosh(2k+1z) cosh(2kx)

sinh(2kt1x — 2Fz)
cosh(2kt+1z) cosh(2kx)
sinh(2F*t1x) cosh(2Fz) — cosh(2*t1z) sinh(2*x)
cosh(2k+1z) cosh(2kx)
sinh(2*t1z)  sinh(2*x)
cosh(2k+1g) B cosh(2kx)
= tanh(2*t'z) — tanh(2*z) .

Consequently, the sum on the left side of (1) telescopes to give the right side.
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Also solved by PETER Y. WOO, Biola University, La Mirada, CA, USA; and LI ZHOU,
Polk Community College, Winter Haven, FL, USA. There was one incorrect solution.

If the finite summation is replaced by a series with k going from 0 to oo (as in the version
of the problem that was originally published), then the sum is 1 — tanh(1), as we can see by
letting n — oo in the result above.

—— | NS

2828. [2003 : 175] Proposed by Achilleas Pavlos Porfyriadis, student,
American College of Thessaloniki “Anatolia”, Thessaloniki, Greece (adapted
by the Editors).

Suppose that f satisfies the functional equation

x + 2000
r—1

f(w)+2f( ) — 4011 —=.

Find the value of f£(2002).

Solution by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; James T. Bruening, Southeast Missouri State University,
Cape Girardeau, MO, USA; Natalio H. Guersenzvaig, Universidad CAECE,
Buenos Aires, Argentina; and Neven Juric¢, Zagreb, Croatia.

x + 2000
x

Let g(x) = —

, for x # 1. The given equation becomes

f(x)+2f(g9(x)) = 4011 —z. ey

It is easy to check that g(z) # 1 and g(g(x)) = . Replacing = by g(x)
in (1), we get
flg(z)) +2f(x) = 4011 —g(z). (2)

Eliminating f(g(x)) from (1) and (2), we have
3f(x) = 4011 — 2¢g(x) + x;
whence,

4011 — 2g(z) + = _ 2 + 4008z — 8011

fl@) = 3 - 3(z — 1)

In particular, f(2002) = 2003.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; AUSTRIAN IMO TEAM 2003; DIONNE BAILEY and ELSIE CAMPBELL, Angelo
State University, San Angelo, TX, USA; BRIAN D. BEASLEY, Presbyterian College, Clinton,
SC, USA; MANUEL BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio, Spain;
CHRISTOPHER BOWEN, Halandri, Greece; CHRISTOPHER ]. BRADLEY, Bristol, UK; SCOTT
BROWN, Auburn University, Montgomery, AL, USA; CHIP CURTIS, Missouri Southern State
College, Joplin, MO, USA; PAOLO CUSTODI, Fara Novarese, Italy; CHARLES R. DIMINNIE,
Angelo State University, San Angelo, TX, USA; WALTHER JANOUS, Ursulinengymnasium,
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Innsbruck, Austria; D. KIPP JOHNSON, Beaverton, OR, USA; RICHARD I. HESS, Rancho Palos
Verdes, CA, USA; GUSTAVO KRIMKER, Universidad CAECE, Buenos Aires, Argentina; KEE-WAI
LAU, Hong Kong, China; UNDINE LEOPOLD, student, Ludwigsgymnasium, Koethen, Germany;
DAVID LOEFFLER, student, Trinity College, Cambridge, UK; GOTTFRIED PERZ, Pestalozzi-
gymnasium, Graz, Austria; ROBERT P. SEALY, Mount Allison University, Sackville, NB;
BOB SERKEY, Leonia, N], USA; MIKE SPIVEY, Samford University, Birmingam, AL, USA;
MIHAT STOENESCU, Bischwiller, France; ROBERT VAN DEN HOOGEN, Saint Francis Xavier
University, Antigonish, NS; M2 JESUS VILLAR RUBIO, Santander, Spain; PETER Y. WOO, Biola
University, La Mirada, CA, USA; L1 ZHOU, Polk Community College, Winter Haven, FL, USA;
TITU ZVONARU, Bucharest, Romania; and the proposer. There was one incorrect solution
submitted.

Janous solved the more general problem: Find all functions f : R \ {1} — R satisfying
the functional equation

= c—x,
x—1

F@) + af (

where |a| # 1 and b # —1. Using the same approach as in the presented solution, he has
shown that the solution is

:r—}—b)

22+ (a(c—1)—c—lz—ab+c)+c
(a2 —1)(z—1) '

f(z) =

The original equation is obtained when a = 2, b = 2000, and ¢ = 4011.

—— | NS

2829. [2003 : 175] (Corrected [2003 : 315]) Proposed by G. Tsintsifas,
Thessaloniki, Greece.

Given A ABC with sides a, b, ¢, prove that

3(a4+b4+c4) ab + be + ca
(a? + b2 + c2)2 a2 + b2 + c2

1. Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Without loss of generality, assume that a < b < ¢. The desired
inequality is equivalent to

3(a* +b* + c*) + (ab+ bc + ca)(a? + b + c?) — 2(a®> + b2 +2)? > 0,
which is equivalent to
%(a(Za —b—c)%(a+ 2b+ 2c)
+ (b — ¢)2(4b? + 4¢2 + 12bc + 2ab + 2ca — 9a2)) > 0.
The last inequality is clearly true. Equality holds if and only if a = b = c.

Note that this proof does not require that a, b, and ¢ are the sides of a
triangle, as long as they are non-negative and a2 + b + ¢2 > 0.
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I1. Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

The desired inequality is equivalent to
3(a* + b* + c*) + (ab + bc + ca)(a® + b + c®) — 2(a®> + b + 2)? > 0.

Since this inequality is symmetric, we can assume that a < b < ¢. Let
b=a+tand c = a +t + s, where s, t > 0. The inequality becomes

3(a*+ (a+t)* + (a+t+5)?)
+(a(a+t)+ (a+t)(a+t+s)+ (a+t+ s)a)
(a®+ (a+t)? + (a+t+s)?)
—2(a®+ (a+t)*+ (a+t+5)2)* >0,
which simplifies to
5a%(s® + st + t?) + 2a(3s® + 7s*t + 3st® + 2t%) + s* + 55t + 55%t2 > 0.

The last inequality is clearly true.

Also solved by ARKADY ALT, San Jose, CA, USA; MIGUEL AMENGUAL COVAS, Cala
Figuera, Mallorca, Spain (2 solutions); SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo,
Bosnia and Herzegovina; DIONNE BAILEY, ELSIE CAMPBELL and CHARLES R. DIMINNIE,
Angelo State University, San Angelo, TX, USA; MICHEL BATAILLE, Rouen, France; MANUEL
BENITO, OSCAR CIAURRI, and EMILIO FERNANDEZ, Logrofio, Spain; PIERRE BORNSZTEIN,
Maisons-Laffitte, France; CHRISTOPHER J. BRADLEY, Bristol, UK; VASILE CIRTOAJE,
University of Ploiesti, Romania; CHIP CURTIS, Missouri Southern State College, Joplin, MO,
USA; JOE HOWARD, Portales, NM, USA; D. KIPP JOHNSON, Beaverton, OR, USA; NEVEN
JURIC, Zagreb, Croatia; MURRAY S. KLAMKIN, University of Alberta, Edmonton, AB; DAVID
LOEFFLER, student, Trinity College, Cambridge, UK; VEDULA N. MURTY, Dover, PA, USA;
JUAN-BOSCO ROMERO MARQUEZ, Universidad de Valladolid, Valladolid, Spain; ECKARD
SPECHT, Otto-von-Guericke University, Magdeburg, Germany; PANOS E. TSAOUSSOGLOU,
Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and TITU ZVONARU,
Bucharest, Romania.

Zhou mentions that he had used the same factoring technique as in his solutions to Crux
problems 2807 and 2821. Originally, the problem was proposed as

2(a* 4+ b* 4 %) ab + bc + ca S o

(a2+b2+02)2 a2+ b2 +4¢2 — !
which is not true. Several solvers have noticed this fact and provided counter-examples.
Alt and Loefler have gone a step further and proved that the expression on the left side of
the originally proposed inequality is between 3/2 and 11/6. Most solvers have solved the
corrected problem.

NN —

2830. [2003 : 176] Proposed by D.]J. Smeenk, Zaltbommel, the
Netherlands.

Suppose that T'(O, R) is the circumcircle of AABC'. Suppose that side
AB is fixed and that C varies on I" (always on the same side of AB).

Suppose that I,,, I, I.., are the centres of the excircles of A ABC oppo-
site A, B, C, respectively. If Q is the centre of the circumcircle of AT, I 1,,
determine the locus of © as C varies.
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Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.

Let I be the incentre of A ABC. Because external and internal bisectors
are perpendicular, we see that AI,, BI,, CI. are the altitudes of AT I, 1.,
the point I is its orthocentre, and I' (through the feet of the altitudes) is
its nine-point circle. Since I and Q are the orthocentre and circumcentre of
NI Ty 1I., the line IQ is its Euler line and O (the nine-point centre) must be
the mid-point of 7Q2. As C moves along I, we note that L/AIB = 90° + C/2
is fixed. Hence, I moves on a fixed circle IV through A and B [whose centre
is the mid-point of the arc AB opposite C]. Since the mid-point O of IQ
is fixed, the point £ must move on a circle that is the reflection of IV in O
(whose centre is the mid-point of the arc AB on the same side as C). As C
runs from A to B on T, the point €2 runs on the arc [interior to I'] of its circle
from the point of I diametrically opposed to A to the point opposed to B.

Also solved by MICHEL BATAILLE, Rouen, France; CHRISTOPHER ]. BRADLEY,
Bristol, UK; JOHN G. HEUVER, Grande Prairie, AB; DAVID LOEFFLER, student, Trinity College,

Cambridge, UK; LI ZHOU, Polk Community College, Winter Haven, FL, USA; TITU ZVONARU,
Bucharest, Romania; and the proposer.
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2831. [2003 : 176] Proposed by Achilleas Pavilos Porfyriadis, student,
American College of Thessaloniki “Anatolia”, Thessaloniki, Greece.

For a convex polygon, prove that it is impossible for two sides without
a common vertex to be longer than the longest diagonal.

1. Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Suppose that AB and C' D are two sides without a common vertex. We
may assume that the diagonals AC and BD intersect at a point F inside the
polygon. By the Triangle Inequality,

AB+CD < AE+EB+ DE+ EC = AC+ BD < 2d,

where d is the length of the longest diagonal. Hence, AB and CD cannot
both be greater than d.

I1. Solution by Christopher Bowen, Halandri, Greece.

Suppose to the contrary that we are given a polygon with n sides and
that two of its sides, say AB and CD, have length greater than all the
diagonals of the polygon.

Since the sides AB and C' D have no vertex in common, the vertices A,
B, C, D are distinct and n is at least 4. If AA’ is a side of the polygon, then
BA'’ is a diagonal, implying that BA > BA’. Thus, in AABA’, we have
/A’AB < Z/AA’B. In particular, ZA’AB, the internal angle at vertex A,
must be acute. This holds equally well for internal angles at B, C, and D.

Therefore, the polygon has at least 4 obtuse external angles and cannot
be convex.
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Also solved by PIERRE BORNSZTEIN, Maisons-Laffitte, France; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; KEE-WAI LAU, Hong Kong, China; DAVID
LOEFFLER, student, Trinity College, Cambridge, UK; GOTTFRIED PERZ, Pestalozzigymnasium,
Graz, Austria; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

———— | NS

2832%. [2003 : 176] Proposed by Walther Janous, Ursulinengymnasium,
Innsbruck, Austria.

Let n be a positive integer, and let

o = [ (20 ()

Prove that
(@) a(n) = 3if and only if n = 1, and
(b) the sequence {a(n)}$2 , is strictly increasing.
Editor: There were no solutions submitted for this problem. As a result,

problem 2832 remains an open problem which the readers of CRUX with
MAYHEM are encouraged to revisit.

NN —

2833%. [2003 : 177] Proposed by Walther Janous, Ursulinengymnasium,
Innsbruck, Austria.

Let a be a positive real number, and let n > 2 be an integer. For each
k=1,2,...,n,let z; be a non-negative real number, A\, be a positive real

number, and let y,, = A\pxr + i"“. Here and elsewhere, indices greater
k41

than n are to be reduced modulo n.

(a) If @ > 1, prove that
n+z a¥ > 2 Z a®* and 3n+z a¥etyr+1 > Z 1+ amk)z .
k=1 k=1 k=1 k=1
(b) 1f 0 < a < 1, prove that the opposite inequalities hold.
[The proposer has proofs for the cases n = 3 and n = 4.]

Solution by David Loeffler, student, Trinity College, Cambridge, UK.
(@ lfu, v >1,wehave (u—1)(v —1) > 0, or

1+uv > u+tw. ¢))
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Hence,

n n T4l
n+ Z a¥t = Z (1 + a)"“m’“a"k-kl)
k=1 k=1
Meanwhile, by the AM—GM Inequality,
a e | g3k > Za%mk(Ak—Fi) > 2a”*. 2

n n

Az Tr

> v s Y af
k=1 k=1

Combining these results, we obtain

n+iay’c > 2iaw’“.
k=1 k=1

Substituting the inequality (1) into itself yields
24+ uvw > 14+uw+w > ut+v+w. 3)

Tl42
) Tyl +
Ak42

Also,

Y+ Ybt+1 = AT + (Ak+1 +
Ak41
Ll4-2

> ATi + 2Tp41 + .
kg2

Denoting these last three terms by u, v, and w, respectively, in (3), we obtain

k=1

n n n n
el Y
3n + E a¥rTyet+1 > n+ E a)\kmk_'_E aZwk_l_ E a>r
k=1

k=1 k=1

and using (2), we obtain

k=1

3n + zn: a¥rTVe+1 > n+2 i a® + i a?® — i(l + a:l!lc)2 .
k=1 k=1

k=1
(b) The claim is not true. Let z;, = Ax = 1 for all k. Then the first

inequality becomes
n(l—a)?® > 0,

n+ na? > 2na =

which is clearly true for all a. Similarly, the second inequality becomes

3n +na* > n(l+a)? < (a—1)3%*@*+2a+2) > 0,

which is also true for all a. Thus, the reverse inequalities do not hold for

0<a<l.
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It is not clear whether the inequalities hold in their original forms for
0 < a < 1; all parts of the proofs go through unchanged except (2), at which
point we would need to show that

F&) + fuw) > 2f (“’T“) ,

where f(z) = e~ at t = log, (Axzi(—log, a)), u = log, (f\—:(— log, a)).
By checking the second derivative of f, we see that this does indeed hold as
long as t and u are always positive; that is, if all the values Ay and f‘—’; are
at least as large as — lolge . Otherwise, this line of argument fails, but the
inequality may still be true.

Also solved by L1 ZHOU, Polk Community College, Winter Haven, FL, USA.

LS e

2834, [2003 : 177] Proposed by Michel Bataille, Rouen, France.

Let f1 = fo = 1and f,, = fn_1 + fn_o for integers n > 2. Then
define
gn = fn+6 + 3fn+2 + 3.fn—2 + .fn—ﬁ

for integers n > 6. Find gcd{ge66+ Ifoes }-
Solution by Chip Curtis, Missouri Southern State College, Joplin, MO, USA;
and Mike Spivey, Samford University, Birmingam, AL, USA.

Repeated application of the recurrence relation for the Fibonacci
sequence {f;} gives

fn—2 = 3fn—5 + 2fn—6 )
.fn = 8fn—5 + 5fn—6 )
.fn—|—2 = 21.fn—5 + 13.f'n,—6 )

fn+6 = 144.f'n—5 + ngn—ﬁ ’

so that
gn = 216f,_5+135f,_6¢ = 27(8fn—5 +5fn-6) = 27fn.
The following property of the Fibonacci sequence is well-known:
ng{fmrfn} = fgcd{m,n} .
(See, for example, Kenneth H. Rossen, editor, Handbook of Discrete
and Combinatorial Mathematics, CRC Press, 2000, p. 143). Applying this
property and using gcd{6666,666} = 6, f¢ = 8, and fs = 21, we obtain
ng{gf6666'gf666} = ng{27ff6666'27-ff666} = 27 ng{ff6666'ff666}
= 27fng{f66661f666} = 27ffgcd{6666,666}
= 27fs = 27fs = 27(21) = 567.
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Also solved by CHRISTOPHER BOWEN, Halandri, Greece;, CHARLES R. DIMINNIE,
Angelo State University, San Angelo, TX, USA; NATALIO H. GUERSENZVAIG, Universidad
CAECE, Buenos Aires, Argentina (2 solutions); WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; DAVID LOEFFLER, student, Trinity College, Cambridge, UK; L1 ZHOU, Polk
Community College, Winter Haven, FL, USA; and the proposer. There were also two incorrect
solutions submitted.

N N —

2835. [2003 : 178] Proposed by G. Tsintsifas, Thessaloniki, Greece.

For non-negative real numbers x and y, not both equal to 0, prove that

zt + y? /Ty > 5

(x+y)?*  z+y — 8

I. Composite of essentially identical solutions by Sefket Arslanagié,
University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Pierre Bornsztein,
Maisons-Laffitte, France; Chip Curtis, Missouri Southern State College,
Joplin, MO, USA; Charles Diminnie, Elsie Campbell, and Dionne Bailey,
Angelo State University, San Angelo, TX, USA; Kee-Wai Lau, Hong Kong,
China; and Li Zhou, Polk Community College, Winter Haven, FL, USA.

If y = 0, then we have 1 > g. Suppose that y # 0 and let u = \/g

Then the given inequality becomes

ud +1 " u
(u? +1)4 u2+1

®| o

This can be rewritten as:

8(ud +1) + 8u(u® +1)3 —5(u?+1)* > 0,
or (u—1)%(3u® + 14u® + 5u* + 20u® + 5u® + 14u +3) > 0,
which is clearly true. Equality holds if and only if w = 1; that is, if and only
ifx =y.

I1. Composite of solutions by Michel Bataille, Rouen, France; and Geoffrey
A. Kandall, Hamden, CT, USA (modified slightly by the editor).

By homogeneity, we may suppose = + y = 1. Then
?+y? = (z+y)? —2zy = 1- 2=y,

and
zt +y* = (2® +y?)? — 22%9y% = 1 — 4xy + 22%y>%.

Hence, it suffices to show that 1 — 4wy + 2x2y* + /Ty > 2.
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Lett = ./zy. Then0 <t < %, and the inequality above becomes

2t* —at’+t+ 2 > o,
16t* —32t2 +8+3 > 0,
or (4t —3)(4t* —1)+8t(1—2t) > 0,

which is true. Equality holds if and only if t = %; that is, if and only if x = y.

I11. Generalization by Walther Janous, Ursulinengymnasium, Innsbruck, Aus-
tria.

Since /zy > mzf_yy, the given inequality follows from the stronger
inequality
xt +y? 2zy

5
@ty @ty = 8 o

Without loss of generality, assume = £ 0. Let y = t. Then (1) becomes
t*+1 2t 5

(t+1)4+(t+1)2 2 5 @

Straightforward computations show that (2) is equivalent to

3t —4at3 + 22 —4t+3 > 0,
or (t—1)?(3t*+2t+3) > o0,

which is clearly true, with equality if and only if ¢ = 1. Therefore, equality
holds in (1) if and only if x = y. It then follows that equality holds in the
original inequality if and only if x = y.

Also solved by ARKADY ALT, San Jose, CA, USA; MANUEL BENITO, OSCAR CIAURRI,
and EMILIO FERNANDEZ, Logrofio, Spain; PAUL BRACKEN, University of Texas, Edinburg,
TX, USA; CHRISTOPHER ]. BRADLEY, Bristol, UK; PAUL DEIERMANN, Southeast Mis-
souri State University, Cape Girardeau, MO, USA; NATALIO H. GUERSENZVAIG, Universidad
CAECE, Buenos Aires, Argentina (2 solutions); RICHARD 1. HESS, Rancho Palos Verdes, CA,
USA; JOE HOWARD, Portales, NM, USA; D. KIPP JOHNSON, Beaverton, OR, USA; NEVEN
JURIC, Zagreb, Croatia; VEDULA N. MURTY, Dover, PA, USA; GOTTFRIED PERZ, Pestalozzi-
gymnasium, Graz, Austria; JUAN-BOSCO ROMERO MARQUEZ, Universidad de Valladolid,
Valladolid, Spain; D.]. SMEENK, Zalthommel, the Netherlands; ECKARD SPECHT, Otto-von-
Guericke University, Magdeburg, Germany; MIKE SPIVEY, Samford University, Birmingham,
AL, USA; PANOS E. TSAOUSSOGLOU, Athens, Greece; PETER Y. WOO, Biola University, La
Mirada, CA, USA; TITU ZVONARU, Bucharest, Romania; and the proposer. There were also
two partly incorrect solutions.

Alt considered and solved several related problems. In particular, he proved that for
n € N, n > 2, the inequality

™ + y" /Ty 1 1
> -
(z+y)™  zt+y — PRIETEE

holds if and only if 2 < n < 7. (Note that the given inequality is the special case when
n = 2.) Janous also extended the result to some inequalities involving the Power Mean.

Y WSS L W
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2836. [2003 : 178] Proposed by G. Tsintsifas, Thessaloniki, Greece.

Suppose that AABC is equilateral and that P is an interior point. The
lines AP, BP, CP intersect the opposite sides at D, E, F, respectively.
Suppose that PD = PE = PF. Determine the locus of P.

Solution by David Loeffler, student, Trinity College, Cambridge, UK,
minimally modified by the editor.

We shall solve the following more general problem: what is the locus
of P such that PD = PE?

Suppose, for convenience, that AB = BC = CA = 1. letz, y, 2
be the lengths of the perpendiculars from P to BC, C A, AB, respectively.
Then z/y = BD/CD. Letting M be the mid-point of BC, it follows that

y
y+z

y—=

y+z

MD = E—BD’ —

1 1
2 2

Since the altitude in AABC is ?, we have

ADZ_ £2+MD2_§+1 Yy—= 2_y2+yz+22
— 2 4 4\y+z)  (y+=2)?2

Then, since PD

= 2  wehave
AD  3/2’

PD2 — gADZ — 4w2(y2+yz+z2)‘
3 3(y + 2)2

Applying the same argument to PE, we see that PD = PE if and
only if
z? (y2 + yz + z2) _ y2 (m2 + xz + zz)
(y+2)? B (z +z)?

This is equivalent to

?(z + 2)* (Y + yz + 2%) — v (y + 2)* (e + 22 4+ 2%) = 0.
Factoring gives
(x—y) (z+y+z) (2® Y’ +za’y+222? + 2y’ + 22wy + 222+ 22y°+2%y) = 0.

Since the second and third terms of the factored polynomial are positive, it
follows that PD = PE if and only if x = y. Thus, the locus is the altitude
through C.

It follows that the solution to the original problem is the intersection of
the three altitudes; that is, the orthocentre of the equilateral triangle ABC
[Ed. in this case, also the centroid, the circumcentre, and the incentre as
stated by various solvers].
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The original problem also solved by MICHEL BATAILLE, Rouen, France; ROBERT
BILINSKI, Outremont, QC; CHRISTOPHER ]. BRADLEY, Bristol, UK; CHIP CURTIS, Missouri
Southern State College, Joplin, MO, USA; CHARLES R. DIMINNIE, Angelo State University,
San Angelo, TX, USA; RICHARD 1. HESS, Rancho Palos Verdes, CA, USA; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; TOSHIO SEIMIYA, Kawasaki, Japan; L1 ZHOU, Polk
Community College, Winter Haven, FL, USA; PETER Y. WOO, Biola University, La Mirada, CA,
USA; and the proposer.

Loeffler also found the locus of a point P such that AD = BE. We leave this to the
readers to discover. He also expressed interest in the case of a scalene triangle, but stated that
he had not been able to make any progress on that case.

Janous suggests the following extension (for which he has no solution at the moment):

Let ABC be an equilateral triangle. For an interior point P, let the
Cevians AP, BP, CP, intersect the opposite sides at D, E, F, respectively.
For ADEF, determine the three loci of P such that

1. P is the centroid;
2. P is the orthocentre;

3. Pis the incentre,

Y WSS L W

2837. [2003 : 178] Proposed by Christopher J. Bradley, Bristol, UK.

Suppose that I is a circle and that I, J, and K are three distinct points
in the plane of I', but not on I'. Let A be any point on I'. Points B, C,
D, E, F, and G on I are defined by the conditions that chords AB and
DE intersect at I, chords BC and EF intersect at J, and chords CD and
FQG intersect at K. (A tangent is to be regarded as a chord with its point of
contact defined to be a pair of coincident points.)

Is it possible to select the positions of I, J, and K so that G coincides
with A for all points A lying on I'? (Justification required!)

1. Identical solutions by Peter Y. Woo, Biola University, La Mirada, CA, USA;
and Li Zhou, Polk Community College, Winter Haven, FL, USA.

The answer is YES. Select I, J, and K to be three collinear points in
the plane of the given circle I (or, more generally, of a given conic I"), but
not onI'. For any point A on I, the figure ABCDEF is a hexagon inscribed
in a conic. Hence, we may apply Pascal’s Theorem to it. By definition AB
meets DE at I while BC meets EF at J. Moreover, K must be the point
where CD intersects I.J, since we have taken K to lie on the line IJ and
defined it to lie on C' D. Therefore, by Pascal’s Theorem (which states that the
intersections of the opposite sides of ABCDEF are collinear), we conclude
that AF must also pass through K. Since G was defined to be the point
where F K meets I" again, we conclude that G coincides with A for any choice
of A.

I1. Solution by Michel Bataille, Rouen, France.

Editor’s comment. Pascal’s Theorem forces I, J, and K to be collinear.
The theorem continues to hold for positions of A that coincide with any of
the other five vertices; for example, should AT be tangent to T, then B = A.
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In fact, the theorem remains valid for as many as three pairs of identical
vertices among the six, so long as the three points I, J, and K are well
defined. Bataille, on the other hand, interpreted the problem differently:
with T, I, J, and K fixed, then for any point A on T, point B is defined to be
the point where AT meets I" again, point C is where B.J meets I" again, and
so forth. Instead of “AB and DE intersect at I", read “AB and DE pass
through I.” These were indeed Bradley’s words in his original statement of
the problem (which the editor changed), so Bataille’s interpretation captures
the true spirit of the proposal, even though the problem’s current wording
suggests that opposite sides of the resulting hexagon must intersect in three
well-defined points. Here, then, is Bataille’s solution.

G will coincide with A for all A onT if and only if either I, J, K are collinear
or AIJK is a self-polar triangle with respect to I (that is, each vertex is the
pole of the opposite side). In the latter case we have A = D, B = E, and
C = F. To prove this, we identify points with complex numbers and, without
loss of generality, suppose that I is the unit circle. For A on T and M not on
I', we denote by M(A) the point of I where the line M A intersects I" again
(and M(A) = A if it is tangent to I" at A). An easy calculation yields

A—M

MA) =

where M is the conjugate of the complex number M.
We readily obtain

D = KoJoI(A) = 3%7:;,
whereU =1-1TJ—-JK+ KIandV =1—-J+ K — IJK, and
AU2—-VV)+ VU -UV

AUV —TV)+TU - VV
It follows that G = A for all A on I if and only if

G = (KoJoI)?(A) =

U2—-VV = U —-VV and VO-UV = UV -TV = 0.
This reduces to (U =U) or (U # U and V = 0 and U + U = 0). Condition
U =U implies I(J — K) — I(J — K) + JK — JK = 0, which means that
I lies on the line through J and K.

On the other hand, conditions V =0 = U 4+ U yield

I-J+K = IJK (1)

and
a—b+ec=0, )

where we denote by a, b, c the real numbers JK+KJ—-2 KI+1IK -2,
and IJ + JI — 2, respectively.
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Since (1) may also be written as al — bJ + cK = 0, we see that (1) and
(2) are equivalent to a+c = band a(I —J)+c¢(K —J) = 0. The latter leads
to a = ¢ = 0, because I, J, K are not collinear. Finally, the second case
occurs if and only if a = b = ¢ = 0. This means that ATJK is self-polar
since Z is on the polar of M with respecttoT'ifand onlyif MZ + MZ = 2,
as it is readily checked.

Notes.

1. For a self-polar triangle IJK, we actually have K o J 0 I(A) = A for
al AonT;thus, D=A=G,E=B,F=C.

2. The result can be extended to a conic I (through a projectivity).

Also solved by DAVID LOEFFLER, student, Trinity College, Cambridge, UK; and the
proposer.

Bradley and Loeffler both gave explicit positions for I, J, and K that are easily seen to
solve the problem directly, without invoking Pascal’s Theorem. With the points represented by
complex numbers as in solution 11, Bradley chose the points 0, v, and 1/r (in the order I, J,
K, with r real and 0 # r # 1), while Loeffler chose r, 0, and —r (r complex and 0 # r # 1).

B e W N
2838%. [2003 : 238] Proposed by Mohammed Aassila, Strasbourg, France.

Let P be a real polynomial with integer coefficients such that there is
an infinite subsequence of the sequence {P(k)}$° , with the property that
the subsequence has only finitely many prime divisors.

Prove that P is of the form P(z) = (axz + b)™.

Editor: There were no solutions submitted for this problem. As a result,
problem 2838 remains an open problem which the readers of CRUX with
MAYHEM are encouraged to revisit.
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