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THE ACADEMY CORNER
No. 10

Bruce Shawyer

All communications about this column should be sent to Bruce
Shawyer, Department of Mathematics and Statistics, Memorial University
of Newfoundland, St. John's, Newfoundland, Canada. A1C 5S7

This month, we present a university entrance scholarship examination

paper from the 1940's. Thanks to Georg Gunther, Sir Wilfred Grenfell Col-

lege, Corner Brook, Newfoundland, for providing this. We challenge today's

university students to solve these problems | send me your nice solutions!

1. Find all the square roots of

1� x+
p
22x� 15� 8x2:

2. Find all the solutions of the system of equations:

x+ y+ z = 2;

x2 + y2 + z2 = 14;

xyz = �6:

3. Suppose that n is a positive integer and that Ck is the coe�cient of xk

in the expansion of (1 + x)n. Show that

nX
k=0

(k+ 1)C2
k =

(n+ 2) (2n� 1)!

n! (n� 1)!
:

4. (a) Suppose that a 6= 0 and c 6= 0, and that ax3 + bx+ c has a factor

of the form x2 + px+ 1. Show that a2 � c2 = ab.

(b) In this case, prove that ax3 + bx + c and cx3 + bx2 + a have a

common quadratic factor.

5. Prove that all the circles in the family de�ned by the equation

x2 + y2 � a(t2 + 2)x� 2aty � 3a2 = 0

(a �xed, t variable) touch a �xed straight line.

6. Find the equation of the locus of a point P which moves so that the

tangents from P to the circle x2 + y2 = r2 cut o� a line segment of

length 2r on the line x = r.
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7. If the tangents at A, B and C to the circumcircle of triangle 4ABC
meet the opposite sides at D, E and F , respectively, prove that D, E

and F are collinear.

8. Find the locus of P which moves so that the polars of P , with respect

to three non-intersecting circles, are concurrent.

9. Suppose that P is a point within the tetrahedron OABC. Prove that

\AOB + \BOC + \COA is less than \APB + \BPC + \CPA.

10. Two unequal circles of radii R and r touch externally, and P and Q are

the points of contact of a common tangent to the circles, respectively.

Find the volume of the frustum of a cone generated by rotating PQ

about the line joining the centres of the circle.

11. Prove that

sin
2
(�+�)+sin

2
(�+�)�2 cos(���) sin(�+�) sin(�+�) = sin

2
(���):

12. Three points A, B and C are on level ground. B is east of A, C is

N. 49� E. of A, and C is N. 11�300 W. of B.

Find the direction of C as seen from the mid-point of AB.

13. With each corner of a square of side r as a centre, four circles of radius

r are drawn.

Show that the area of the central curvilinear quadrilateral formed inside

the square by the intersection of the four circles is

r2
�
1�

p
3 +

�

3

�
:

14. An observer on a boat is vertically beneath the centre of a bridge, which

crosses a straight canal at right angles. Looking upwards, the observer

sees that the angle subtended by the length of the bridge is 2�. The

observer then rows a distance � along the middle of the canal, and then

�nds that the length of the bridge now subtends an angle of 2�.

Show that the length of the bridge is

2�p
cot2 � � cot2 �

:
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THE OLYMPIAD CORNER
No. 181

R.E. Woodrow

All communications about this column should be sent to Professor R.E.
Woodrow, Department of Mathematics and Statistics, University of Calgary,
Calgary, Alberta, Canada. T2N 1N4.

We begin this number with two contests. Thanks go to Richard

Nowakowski, Canadian Team Leader to the 35th IMO in Hong Kong, for

collecting them and forwarding them to us.

SELECTED PROBLEMS FROM THE ISRAEL
MATHEMATICAL OLYMPIADS, 1994

1. p and q are positive integers. f is a function de�ned for positive

numbers and attains only positive values, such that f(xf(y)) = xpyq. Prove

that q = p2.

2. The sides of a polygon with 1994 sides are ai =
p
4 + i2, i =

1; 2; : : : ; 1994. Prove that its vertices are not all on integer mesh points.

3. A \standard triangle" in the plane is a (�lled) isosceles right triangle

whose sides are parallel to the x and y axes. A �nite family of standard

triangles, containing at least three, is given. Every three of this family have

a common point. Prove that there is a point common to all triangles in that

family.

4. A shape c0 is called \a copy of the planar shape c" if the following

conditions hold:

(i) There are two planes � and �0 and a point P that does not belong

to either of them.

(ii) c 2 � and c0 2 �0.
(iii) A point X0 satis�esX0 2 c0 i� X0 is the intersection of �0 with the

line passing through X and P .

Given a planar trapezoid, prove that there is a square which is a copy

of this trapezoid.

5. Find all polynomials p(x), with real coe�cients, satisfying

(x� 1)2p(x) = (x� 3)2p(x+ 2)

for all x.
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PROBLEMS FROM THE BI-NATIONAL
ISRAEL-HUNGARY COMPETITION, 1994

1. a1; : : : ; ak; ak+1; : : : ; an are positive numbers (k < n). Suppose

that the values of ak+1; : : : ; an are �xed. How should one choose the values

of a1; : : : ; ak in order to minimize
P

i;j;i6=j
ai
aj
?

2. Three given circles pass through a common point P and have the

same radius. Their other points of pairwise intersections are A, B, C. The

3 circles are contained in the triangle A0B0C0 in such a way that each side of

4A0B0C0 is tangent to two of the circles. Prove that the area of 4A0B0C0
is at least 9 times the area of4ABC.

3. m, n are two di�erent natural numbers. Show that there exists a

real number x, such that 1
3
� fxng � 2

3
and 1

3
� fxmg � 2

3
, where fag is

the fractional part of a.

4. An \n-m society" is a group of n girls andm boys. Show that there

exist numbers n0 andm0 such that every n0-m0 society contains a subgroup

of �ve boys and �ve girls in which all of the boys know all of the girls or none

of the boys knows none of the girls.

Last issue we gave �ve more Klamkin Quickies. Next we give his

\Quicky" solutions to these problems. Many thanks to Murray S. Klamkin,

the University of Alberta, for creating the problems and solutions.

ANOTHER FIVE KLAMKIN QUICKIES
October 21, 1996

6. Determine the four roots of the equation x4 + 16x� 12 = 0.

Solution. Since

x4 +16x� 12 = (x2+2)2� 4(x� 2)2 = (x2 +2x� 2)(x2� 2x+6) = 0;

the four roots are �1�
p
3 and 1� i

p
5.

7. Prove that the smallest regular n-gon which can be inscribed in a

given regular n-gon is one whose vertices are the midpoints of the sides of

the given regular n-gon.

Solution. The circumcircle of the inscribed regular n-gonmust intersect

each side of the given regular n-gon. The smallest that such a circle can be

is the inscribed circle of the given n-gon, and it touches each of its sides at

its midpoints.
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8. If 311995 divides a2 + b2, prove that 311996 divides ab.

Solution. If one calculates 12; 22; : : : ; 302 mod 31 one �nds that the

sum of no two of these equals 0 mod 31. Hence, a = 31a1 and b = 31b1 so

that 311993 divides a21 + b21. Then, a1 = 31a2 and b1 = 31b2. Continuing in

this fashion (with p = 31), we must have a = p998m and b = p998n so that

ab is divisible by p1996.

More generally, if a prime p = 4k + 3 divides a2 + b2, then both a

and b must be divisible by p. This follows from the result that \a natural n
is the sum of squares of two relatively prime natural numbers if and only if
n is divisible neither by 4 nor by a natural number of the form 4k+ 3" (see

J.W. Sierpi �nski, Elementary Theory of Numbers, Hafner, NY, 1964, p. 170).

9. Determine the minimum value of

S =
p
(a+ 1)2 + 2(b� 2)2 + (c+ 3)2 +

p
(b+ 1)2 + 2(c� 2)2 + (d+ 3)2)

+
p
(c+ 1)2 + 2(d� 2)2 + (a+ 3)2 +

p
(d+ 1)2 + 2(a� 2)2 + (b+ 3)2

where a, b, c, d are any real numbers.

Solution. Applying Minkowski's inequality,

S �
p
(4 + s)2 + 2(s� 8)2 + (s+ 12)2 =

p
4s2 + 288

where s = a+ b+ c+ d. Consequently, minS = 12
p
2 and is taken on for

a = b = c = d = 0.

10. A set of 500 real numbers is such that any number in the set is

greater than one-�fth the sum of all the other numbers in the set. Determine

the least number of negative numbers in the set.

Solution. Letting a1; a2; a3; : : : denote the numbers of the set and S

the sum of all the numbers in the set, we have

a1 >
S � a1

5
; a2 >

S � a2

5
; : : : ; a6 >

S � a6

5
:

Adding, we get 0 > S � a1 � a2 � � � � � a6 so that if there were six or less

negative numbers in the set, the right hand side of the inequality could be

positive. Hence, there must be at least seven negative numbers.

Comment. This problem where the \5" is replaced by \1" is due to

Mark Kantrowitz, Carnegie{Mellon University.
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First a solution to one of the 36th IMO problems:

2. [1995: 269] 36th IMO
Let a, b, and c be positive real numbers such that abc = 1. Prove that

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
� 3

2
:

Solution by Panos E. Tsaoussoglou, Athens, Greece.
By the Cauchy{Schwartz inequality

[a(b+ c) + b(c+ a) + c(a+ b)]

�
1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)

�

�
�
1

a
+

1

b
+

1

c

�2
;

or

2(ab+ ac+ bc)

�
1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)

�

� (ab+ ac+ bc)2

(abc)2
;

or
1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
� ab+ ac+ bc

2
;

because abc = 1.

Also
ab+ ac+ bc

3
� 3
p
a2b2c2 = 1:

Therefore
1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
� 3

2

holds.
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Now we turn to some of the readers' solutions to problems proposed

to the jury but not used at the 35th IMO in Hong Kong [1995: 299{300].

PROBLEMS PROPOSED BUT NOT USED
AT THE 35th IMO IN HONG KONG

Selected Problems

3. A semicircle � is drawn on one side of a straight line `. C and D

are points on �. The tangents to � at C and D meet ` at B and A respec-

tively, with the center of the semicircle between them. Let E be the point

of intersection of AC and BD, and F be the point on ` such that EF is

perpendicular to `. Prove that EF bisects \CFD.

Solutions by Toshio Seimiya, Kawasaki, Japan; and by D.J. Smeenk,
Zaltbommel, the Netherlands. We give Seimiya's write-up.

� �

T FQ O

E

D

C

P

AB `

Let P be the intersection of AD and BC. Then \PCO = \PDO =

90�, \CPO = \DPO and PC = PD. Let Q be the intersection of PE

with AB. Then by Ceva's Theorem, we get

BQ

QA
� AD
DP

� PC
CB

=
BQ

QA
� AD
CB

= 1:

Thus we get

BQ

QA
=
BC

AD
: (1)

Since \BPO = \APO we get

PB

PA
=
BO

AO
: (2)

We put \PAB = �, \PBA = �.
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Let T be the foot of the perpendicular from P to AB. Then from (1)

and (2) we have

BC

AD
=
BO cos�

AO cos�
=
PB cos�

PA cos�
=
PT

TA
: (3)

From (1) and (3) we have

BQ

QA
=
PT

TA
:

Hence Q coincides with T so that P , E, F are collinear. [See page 136.]

Because \PCO = \PDO = \PFO = 90�, P , C, F , O, D are con-

cyclic. Hence \CFE = \CFP = \CDP = \DCP = \DFP = \DFE.

Thus EF bisects \CFD.

AB OF

C

D

P

E

`

4. A circle ! is tangent to two parallel lines `1 and `2. A second circle

!1 is tangent to `1 at A and to ! externally at C. A third circle !2 is tangent

to `2 at B, to ! externally at D and to !1 externally at E. AD intersects

BC at Q. Prove that Q is the circumcentre of triangle CDE.

Solutions by Toshio Seimiya, Kawasaki, Japan; and by D.J. Smeenk,
Zaltbommel, the Netherlands. We give Smeenk's solution.

We denote the three circles as !(O;R), !1(O1; R1), !2(O2; R2). Now

let ! touch `1 at F and `2 at F 0. Let the line through O2 parallel to `1
intersect FF 0 at G and the production of AO1 at H.
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F 0 M B`2

`1 F L A

O1

O2

E

C

Q

DK

G

R

R2

R1

R2

R1

N

O

Let the line through D parallel to `1 intersect FF
0 at K.

Let the line through D parallel to FF 0 intersect `1 at L, `2 at M and

GO2 at N . Now AF is a common tangent of ! and !1, so

AF = 2
p
RR1 (1)

and

BF 0 = 2
p
RR2 = GO2: (2)

It follows that

HO2 = j2
p
RR2 � 2

p
RR1j;

HO1 = 2R� R1 � R2:

In right triangle O1HO2,

(2
p
RR2 � 2

p
RR1)

2 + (2R� R1 � R2)
2 = (R1 +R2)

2:

After some reduction R = 2
p
R1R2.

Next consider triangle GOO2.

GO = R� R2; GO2 = 2
p
RR2; DO2 = R2; DO = R; KDkGO2:

We �nd that GN = FL =
R

R+ R2

�GO2 =
2R
p
RR2

R+ R2

.

With (1) we have

AL = 2
p
RR1 �

2R
p
RR2

R+ R2

: (3)
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Furthermore DN =
R2

R+R2

�GO =
R2(R� R2)

R+R2

and

DL = 2R�R2 �
R2(R� R2)

R+ R2

=
2R2

R+ R2

: (4)

Now AD2 = AL2 +DL2. With (3) and (4),

 
2
p
RR1 �

2R
p
RR2

R1 + R2

!2

+

�
2R2

R1 + R2

�2
= 4RR1 = AE2:

So AD = AF .

That means that AD touches ! atD andAD is a common tangent and

the radical axis of ! and !2.

In the same way BC is the radical axis of ! and !1 andQ is the radical

point of !, !1 and !2.

So QC = QD = QE, as required.

5. A line ` does not meet a circle ! with center O. E is the point on

` such that OE is perpendicular to `. M is any point on ` other than E.

The tangents from M to ! touch it at A and B. C is the point on MA such

that EC is perpendicular to MA. D is the point on MB such that ED is

perpendicular to MB. The line CD cuts OE at F . Prove that the location

of F is independent of that ofM .

Solution by Toshio Seimiya, Kawasaki, Japan.

AsMA, MB are tangent to ! at A, B respectively, we get \OAM =

\OBM = 90� and OM ? AB. Let N , P be the intersections of AB with

OM and OE respectively.

Since M , E, P , N lie on the circle with diameter MP we get ON �
OM = OB2 = r2 where r is the radius of !. Hence P is a �xed point. (P

is the pole of `.)

Let G be the foot of the perpendicular from E to AB. As \OBM =

\OAM = \OEM = 90�, O, B,M , E, A are concyclic, so that by Simson's

Theorem C, D, G are collinear.
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!

`EM

D

B

O

A

G

N P

C F

r

Since A, C, E, G lie on the circle with diameter AE we get

\EGF = \EGC = \EAC = \EAM: (1)

As O, M , E, A are concyclic and OM is parallel to EG we have

\EAM = \EDM = \DEG = \FEG: (2)

From (1) and (2) we get

\EGF = \FEG: (3)

Since \EGP = 90� we get

\FGP = \FPG: (4)

From (3) and (4) we have EF = FG = FP . Thus F is the midpoint of

EP . Hence F is a �xed point.
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Next, we give a counterexample to the �rst problem of the set of prob-

lems proposed to the jury, but not used at the 35th IMO in Hong Kong given

in the December 1995 number of the corner.

1. [1995: 334] Problems proposed but not used at the 35th IMO in
Hong Kong.

ABCD is a quadrilateral with BC parallel to AD. M is the midpoint

of CD, P that of MA and Q that of MB. The lines DP and CQ meet at

N . Prove that N is not outside triangle ABM .

Counterexamples by Joanna Jaszu �nska, student, Warsaw, Poland; and
by Toshio Seimiya, Kawasaki, Japan. We give Jaszu �nska's example.

A D

M

CB

P

N

X

Q

t

We draw a triangle ADM and denote the midpoint of MA by P . Let

C be a point on the half-lineDM such that M is the midpoint of CD.

Let N be any point of the segment PD, inside triangle ADM .

We construct a parallelogramMCBX such thatMX andBC are par-

allel to AD and X lies on the segment CN .

Let us denote the point where the diagonal MB of this quadrilateral

meets CN by Q. Q is then the midpoint of MB.

Connect points A and B. We have thus constructed a quadrilateral

ABCD with BC parallel to AD, M is the midpoint of CD, P that ofMA

and Q that of MB. Lines DP and CQ meet at N .

N is inside triangle ADM ; hence it is outside triangle ABM .
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Next we look back to some further solutions to problems of the Sixth

Irish Mathematical Olympiad given in [1995: 151{152] and for which some

solutions were given in [1997: 9{13]. An envelope from Michael Selby ar-

rived which I mis�led. It contains solutions to problems 1, 2, and 4 of Day 1,

and problems 1, 2, 3 and 4 of Day 2.

1. [1995: 152] Second Paper, Sixth Irish Mathematical Olympiad.

Given �ve points P1, P2, P3, P4, P5 in the plane having integer coor-

dinates, prove that there is at least one pair (Pi; Pj) with i 6= j such that

the line PiPj contains a point Q having integer coordinates and lying strictly

between Pi and Pj.

Solution by Michael Selby, University of Windsor, Windsor, Ontario.

The points can be characterized according to the parity of their x and

y coordinates. There are only four such classes: (even, even), (even, odd),

(odd, even), (odd, odd).

Since we are given �ve such points, at least two must have the same

parity of coordinates by the Pigeonhole Principle. Suppose they are Pi and

Pj , Pi = (xi; yi), Pj = (xj ; yj). Then xi + xj is even and yi + yj is even,

since the xi, xj have the same parity and yi, yj have the same parity. Hence

the midpoint

Q =

�
xi + xj

2
;
yi + yj

2

�

has integral coordinates.

2. [1995: 152] Second Paper, Sixth Irish Mathematical Olympiad.

Let a1; a2; : : : an, b1; b2; : : : bn be 2n real numbers, where

a1; a2; : : : ; an are distinct, and suppose that there exists a real number �

such that the product

(ai + b1)(ai+ b2) : : : (ai + bn)

has the value � for all i (i = 1; 2; : : : ; n). Prove that there exists a real

number � such that the product

(a1 + bj)(a2 + bj) : : : (an + bj)

has the value � for all j (j = 1; 2; : : : ; n).

Solution by Michael Selby, University of Windsor, Windsor, Ontario.

De�ne

Pn(x) = (x+ b1)(x+ b2) � � � (x+ bn)� �: (1)

Then Pn(ai) = 0 for i = 1; 2; : : : ; n.

Therefore Pn(x) = (x� a1)(x� a2) � � � (x� an) by the Factor Theorem.
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Now (�1)nPn(�x) = (x+ a1)(x+ a2) � � � (x+ an). So

(�1)nPn(�bi) = (bi + a1)(bi+ a2) � � � (bi+ an)

= (�1)n+1� by (1):

Hence (bi+ a1)(bi+ a2) � � � (bi + an) = (�1)n+1� for i = 1; 2; : : : ; n.

Thus, the result is true with � = (�1)n+1�.

That completes the Corner for this number. We are in high Olympiad

season. Send me your nice solutions and contests.

Do you believe what occurs in print?

The last sentence of the quoted passage, taken from The Daughters of
Cain by Colin Dexter (Macmillan, 1994), contains two factual erors. What are

they?

`Have you heard of \Pythagorean Triplets"?'

`We did Pythagoras Theorem at school.'

`Exactly. The most famous of all the triplets, that is |

\3, 4, 5" 32 + 42 = 52. Agreed?'

`Agreed.'

`But there are more spectacular examples than that.

The Egyptians, for example, knew all about \5961, 6480, 8161".'

Contributed by J.A. McCallum, Medicine Hat, Alberta.
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BOOK REVIEWS

Edited by ANDY LIU

The Lighter Side of Mathematics,

edited by Richard K. Guy and Robert E. Woodrow,

Mathematical Association of America, Washington DC,

1994, ISBN 0-88385-516-X, 376+ pages, softcover, US $38.50,

reviewed byMurray S. Klamkin, University of Alberta.

This book is the proceedings of the Eugene StrensMemorial Conference

on RecreationalMathematics and its Historyheld at the University of Calgary

in August 1986 to celebrate the founding of the Strens Collection which is now

the most complete library of recreational mathematics in the world.

I had been invited to attend this conferences but unfortunately had a

previous committment. To make up for missing this conference, the next best

thing was reviewing this proceedings book which on doing so made me real-

ize what I had missed, for example, some very interesting talks plus getting

together with the leading practitioners of recreational mathematics, some of

whom were long time colleagues.

One does not normally include a list of contents in a book review, but by

doing so, it will give the reader a good indication of the wealth of recreational

material here . So if you have any interest in recreational mathematics, this

is a book for you. And even if you do not have such an interest, reading this

book may give you one.

Contents

Preface

The Strens Collection 1

Eugene Louis Charles Marie Strens 5

Part 1: Tiling & Coloring

Frieze Patterns, Triangulated Polygons and Dichromatic Symmetry,

H. S. M. Coxeter & J. F Rigby 15

Is Engel's Enigma a Cubelike Puzzle? J. A. Eidswick 28

Metamorphoses of Polygons, Branko Gr �unbaum 35

SquaRecurves, E-Tours, Eddies, and Frenzies:

Basic Families of Peano Curves on the Square Grid,

Douglas M. McKenna 49

Fun with Tessellations, John F. Rigby 74

Escher: A Mathematician in Spite of Himself, D. Schattschneider 91

Escheresch, Athelstan Spilhaus 101

The Road Coloring Problem, Daniel Ullman 105

Fourteen Proofs of a Result About Tiling a Rectangle, Stan Wagon 113

Tiling R3 with Circles and Disks, J. B. Wilker 129
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Part 2: Games & Puzzles

Introduction to Blockbusting and Domineering, Elwyn Berlekamp 137

AGenerating Function for the Distribution of the Scores of all Possible Bowling Games,

Curtis N. Cooper & Robert E. Kennedy 149

Is the Mean Bowling Score Awful?

Curtis N. Cooper & Robert E. Kennedy 155

Recreation and Depth in Combinatorial Games, Aviezri Fraenkel 159

Recreational Games Displays

Combinatorial Games, Aviezri S. Fraenkel 176

Combinatorial Toys, Kathy Jones 195

Rubik's Cube | application or illumination of group theory?

Mogens Esrom Larsen 202

Golomb's Twelve Pentomino Problems, Andy Liu 206

A New Take-Away Game, Jim Propp 212

Confessions of a Puzzlesmith, Michael Stueben 222

Puzzles Old & New: Some Historical Notes, Jerry Slocum 229

Part 3: People & Pursuits

The Marvelous Arbelos, Leon Banko� 247

Cluster Pairs of an n-Dimensional Cube of Edge Length Two,

I. Z. Bouwer & W. W. Cherno� 254

The Ancient English Art of Change Ringing, Kenneth J. Falconer 261

The Strong Law of Small Numbers, Richard K. Guy 265

Match Sticks in the Plane, Heiko Harborth 281

Misunderstanding My Mazy Mazes May Make Me Miserable,

Mogens Esrom Larsen 289

Henry Ernest Dudeney: Britain's Greatest Puzzlist, Angela Newing 294

From Recreational to Foundational Mathematics, Victor Pambuccian 302

Alphamagic Squares, Lee C. F. Sallows 305

Alphamagic Squares: Part II, Lee C. F. Sallows 326

The Utility of Recreational Mathematics, David Singmaster 340

The Development of Recreational Mathematics in Bulgaria,

Jordan Stoyanov 346

V � E + F = 2, Herbert Taylor 353

Tracking Titanics, Samuel Yates 355

List of Conference Participants 363

Postscript:

There is a typographical error in Andy Liu's article on page 206. The number

of tetrominoes is �ve and not four. This is corrected in the reprint of this

article as Appendix C in the new edition of Golomb's \Polyominoes".
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In Memoriam | Leon Banko�

We were saddened to learn of the recent death of Dr. Leon Banko�,

who has been a contributor to CRUX over many years. Sadly, he was not

able to contribute recently, and some of our more recent readers may not

know so much about him. We refer you to an excellent article in the March

1992 issue of the College Mathematics Journal, entitled A Conversation with

Leon Banko�, written by G.L. Alexanderson.

One of Leon's long time friends, Dr. Clayton Dodge, has written the

appreciation printed below.

Leon Banko� practiced dentistry for sixty years in Beverly Hills, Cali-

fornia, until his retirement just a few years ago. His patients included many

Hollywood personalities whose names are household words. Among his sev-

eral other interests, such as piano, guitar, calculators, and computers, he

lectured and wrote papers both on dentistry and mathematics. His specialty

was geometry, and the �gure he loved best was the arbelos, or shoemaker's

knife, which consists of three semicircles having a common diameter line.

The two smaller semicircles are externally tangent to each other and inter-

nally tangent to the largest semicircle.

It is said that the test of a mathematician is not what he himself has

discovered, but what he inspired others to do. Leon discovered a third circle

congruent to the twin circles of Archimedes and published that result in the

September 1974 issue of Mathematics Magazine (\Are the Twin Circles of

Archimedes Really Twins?", pp. 214-218.) This revelation motivated the

discovery by Leon and by others of several other members of that family of

circles. An article on those circles is in progress.

Dr. Banko� edited the Problem Department of the Pi Mu Epsilon

Journal from 1968 to 1981, setting and maintaining a high standard of ex-

cellence in the more than 300 problems he included in its pages. Although

the Journal has a relatively small circulation, its Problem Department grew

to have a large number of regular contributors. He became acquainted with

Crux Mathematicorum early in its history, when it was called Eureka, and
made many contributions to its pages over the years, maintaining a close

friendship with its founder and �rst editor Leo Sauv �e. Like Leo, who started

Crux to add some spice to his mathematical life of teaching basic post high

school courses, Leon worked in mathematics for mental exercise and recre-

ation, making friendswith and earning the respect of many well knownmath-

ematicians.

Leon and I became good friends, �rst through correspondence regarding

the PiMu Epsilon Journal Problem Department, and later throughmany per-

sonal meetings, including the August 1979 meeting of problemists in

Ottawa, sponsored by Leo Sauv �e and Fred Maskell of Crux. Following the



146

formal sessions in Ottawa, seven of us drove to Quebec City for an enjoyable

weekend of sightseeing and fellowship: Leo and Carmen Sauv �e, Leon and

Francine Banko�, Charles and Avetta Trigg, and I. Since his retirement from

his dentistry, Leon has worked on the manuscript for a proposed book on the

properties of the arbelos, carrying on a monumental task started by him and

the late Victor Th �ebault. Much material has been collected for this project

and much remains to be done on it. Indeed, he asked me to �nish the job.

At one time some years ago a schoolgirl wrote to Albert Einstein about

a mathematical question she had. Apparently Einstein misinterpreted her

question and gave an incorrect answer. Banko� pointed out this error and in

his mathematical museum he now has a copy of the Los Angeles Times with

the front page headline \Local Dentist Proves Einstein Wrong."

Leon developed many physical problems in his later years. He was a

�ghter and he won several physical battles. When I last visited him at his

home in Los Angeles in October 1996, he was �ghting liver cancer, but still

working on the Th �ebault material, in spite of failing eyesight. On Sunday

afternoon, February 16, 1997, the cancer overtook him and he died at his

home at the age of 88.

He was a gentleman, a scholar, and a true friend.

Clayton W. Dodge

University of Maine

Orono, ME 04469-5752

Heronian Triangles with

Associated Inradii in Arithmetic Progression

Paul Yiu
Department of Mathematics, Florida Atlantic University

In memory of Dr. Leon Banko�

1. The area of a triangle is given in terms of its sides a, b, c by the Heron

formula

4 =
p
s(s� a)(s� b)(s� c);

where s := 1
2
(a + b + c) is the semiperimeter. A triangle (a; b; c;4) is

called Heronian if its sides and area are all integers. L. Banko� [1] has made

an interesting observation about the Heronian triangle (13;14; 15; 84). The
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height on the side 14 being 12, this triangle can be decomposed into two

Pythagorean components, namely, (5; 12; 13) and (9; 12; 15). The inradii of

these Pythagorean triangles, and that of the Heronian triangle, are respect-

ively 2, 3, 4, three consecutive integers! (See Figure 1). Noting that the sides

of the Heronian triangle are themselves three consecutive integers, Banko�

remarked that \no other Heronian triangle can claim that distinction".

Actually, apart from this, there are exactly two other Heronian trian-

gles with three consecutive integers for the associated inradii. Each of these

two Heronian triangles is decomposable into two Pythagorean components,

namely,

(15;20; 25; 150) = (9; 12; 15) [ (16; 12; 20); (2)

(25;39; 56; 420) = (20; 15; 25) [ (36; 15; 39): (3)

The three inradii in these two cases are 3, 4, 5, and 5, 6, 7 respectively. The

Heronian triangle (15; 20; 25; 150) in (2) has an interesting property that no

other Heronian triangle shares. Here, if the smaller Pythagorean component

(9; 12; 15) is excised from the larger one (16;12; 20), another Heronian tri-

angle results, namely,

(15;20; 7; 42) = (16; 12; 20) n (9; 12; 15): (4)

This has inradius 2. (See Figure 2). Note that the four inradii are consecutive

integers! The same construction applied to Banko�'s example (13; 14;15; 84)

gives (13; 15; 4; 24), with inradius 3
2
, not an integer. For the Heronian tri-

angle (25;39; 56; 420) in (3), this fourth inradius is 3, albeit not consecutive

with the other three inradii 5, 6, and 7. In x 4 below, we shall show that,

up to similarity, the con�guration in Figure 2 is the only one with the four

associated inradii in arithmetic progression.

q q q

q

q

q

5 9

2

4
3

12
13 15

q

q

q

q

q

q

q

q

9 9 7

3

5 4

2

12
2015

Figure 1. Figure 2.

2. Consider two right triangles with a common side y and opposite acute

angles � and � juxtaposed to form a triangle �(+). We shall assume � >

�, so that �1 can be excised from �2 to form another triangle �(�). (See

Figures 3 and 4). The inradius of a triangle with area4 and semiperimeter s

is given by r = 4
s
. (See, for example, Coxeter [2, p. 12]). For a right triangle

with legs a, b, and hypotenuse c, this is also given by the simpler formula
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r = s�c = 1
2
(a+b�c). We shall determine the similarity classes of triangles

for which the inradii of the triangle and its two Pythagorean components are

in arithmetic progression. The calculations can be made simple by making

use of the fact that in a right triangle with an acute angle �, the sides are

in the ratio 2t : 1 � t2 : 1 + t2, where t = tan �
2
. Let t1 := tan �

2
and

t2 := tan �

2
.

�1 �2

a1 a2y

x1 x2

� �

�1 �(�)

y

x1 a
0

3

a1 a2

� �

�(+) = �1 [ �2 �(�) = �2n�1
Figure 3. Figure 4.

By choosing y = 2t1t2, we have, in Figures 3 and 4,

a1 = t2(1 + t21); a2 = t1(1 + t22);

x1 = t2(1� t21); x2 = t1(1� t22);

a3 = x1 + x2 = (t1 + t2)(1 � t1t2); a03 = x2 � x1 = (t1 � t2)(1 + t1t2):

From these, we determine the inradii of the four triangles �1, �2, �(+) and

�(�):

r1 = t1t2(1� t1); r2 = t1t2(1� t2);

r+ = t1t2(1� t1t2); r� = t1t2(1� t2
t1
):

(5)

Since r1 < r2, r� < r2, and r� < r+, there are only three cases in

which three of these inradii can be in arithmetic progression:

(i) r1, r2, r+ are in A.P. if and only if t1, t2, t1t2 are in A.P., that is,

t1 + t1t2 = 2t2. From this, t2 = t1
2�t1 , and

r1 : r2 : r+ = 2� t1 : 2 : 2 + t1: (6)

(ii) r�, r1, r2 are in A.P. if and only if t2
t1
, t1, t2 are in A.P., that is,

t2
t1

+ t2 = 2t1. From this, t2 =
2t21
1+t1

, and

r� : r1 : r2 = 1 : 1 + t1 : 1 + 2t1: (7)

(iii) r1, r�, r2 are in A.P. if and only if t1,
t2
t1
, t2 are in A.P., that is,

t1 + t2 = 2t2
t1
. From this, t2 =

t21
2�t1 , and

r1 : r� : r2 = 2� t1 : 2 : 2 + t1: (8)
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In each of these cases, with t := t1, the proportions of the sides of �(�)
are as follows. These triangles are all genuine for 0 < t < 1.

A.P. a1 : a2 : a3 (or a03)

(i) r1; r2; r+ (2� t)(1 + t2) : 2(2� 2t+ t2) : (3� t)(1� t)(2 + t)

(ii) r
�
; r1; r2 2t(1 + t)(1 + t2) : 1 + 2t+ t2 + 4t4 : (1� t)(1 + t+ 2t3)

(iii) r1; r�; r2 t(2� t)(1 + t2) : 4� 4t+ t2 + t4 : 2(1� t)(2� t+ t3)

3. Among the triangles constructed above with three associated inradii

in A.P., the only cases in which the three sides also are in A.P. are tabu-

lated below. In each case, we give the smallest Heronian triangle with three

associated inradii in integers.

(t1; t2) Triangle with decomposition inradii

(1) (2
3
; 1
2
) (13;15; 14;84) = (5; 12;13) [ (9;12; 15) (r1; r2; r+) = (2;3; 4)

(2) (1
2
; 1
3
) (15;20; 25;150) = (9;12; 15) [ (16;12; 20) (r1; r2; r+) = (3;4; 5)

(3) (1
2
; 1
6
) (15;37; 26;156) = (35;12; 37) n (9; 12; 15) (r1; r�; r2) = (3;4; 5)

(4) (1
5
; 1
15

) (39;113; 76;570) = (112;15; 113) n (36;15; 39) (r�; r1; r2) = (5;6; 7)

Banko�'s observation [1] on the Heronian triangle (13;14; 15; 84) is case (1)

in this table.

4. Finally, we consider the possibility for the four inradii r�, r1, r2, r+,
to be in A.P. First, assume r1; r�; r2 in A.P. By (8), r1 : r� : r2 = 2� t1 :

2 : 2 + t1; indeed, t2 =
t21

2�t1 . From (5), we have, after simpli�cation,

r1 : r� : r2 : r+ = 2� t1 : 2 : 2 + t1 : 2 + t1 + t21:

Now, these four inradii are in A.P. if and only if 2 + t1 + t21 = 2+ 2t1. This

is clearly impossible for 0 < t1 < 1.

It remains, therefore, to consider the possibility that r�, r1, r2, r+ be

in A.P. This requires, by (7), r1 : r2 = 1 + t1 : 1 + 2t1, and also by (6),

r1 : r2 = 2 � t1 : 2. It follows that 1 + t1 : 1 + 2t1 = 2 � t1 : 2, from

which t1 = 1
2
. Consequently, r1 : r2 = 3 : 4. Also, r1 : r+ = 3 : 5 from (6),

and r� : r1 = 2 : 3 from (7). Thus, we have the con�guration in Figure 2, in

which the four inradii are in the ratio

r� : r1 : r2 : r+ = 2 : 3 : 4 : 5:

The author thanks the referee for valuable comments and suggestions.
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THE SKOLIAD CORNER
No. 21

R.E. Woodrow

This number we give the problems of the Manitoba Mathematical Con-

test for 1995. This is a two hour contest aimed primarily at grade 12 students,

and sponsored by the Actuaries Club of Winnipeg, The Manitoba Association

of Mathematics Teachers, The Canadian Mathematical Society and The Uni-

versity of Manitoba. My thanks go to Diane and Roy Dowling, organizers of

the contest for supplying us with it.

THE MANITOBAMATHEMATICAL CONTEST 1995
For Students in Grade 12

Wednesday, February 22, 1995 | Time: 2 hours

1. (a) If a and b are real numbers such that a+ b = 3 and a2+ab = 7

�nd the value of a.

(b) Noriko's average score on three tests was 84. Her score on the �rst

test was 90. Her score on the third test was 4 marks higher than her score

on the second test. What was her score on the second test?

2. (a) Find two numbers which di�er by 3 and whose squares di�er

by 63.

(b) Find the real number which is a root of the equation

27(x� 1)3 + 8 = 0:

3. (a) Two circles lying in the same plane have the same centre. The

radius of the larger circle is twice the radius of the smaller circle. The area

of the region between the two circles is 7. What is the area of the smaller

circle?

(b) The area of a right triangle is 5. Also, the length of the hypotenuse

of this triangle is 5. What are the lengths of the other two sides?

4. (a) The parabola whose equation is 8y = x2 meets the parabola

whose equation is x = y2 at two points. What is the distance between these

two points?

(b) Solve the equation 3x3 + x2 � 12x� 4 = 0.

5. (a) Find the real number a such that a4 � 15a2 � 16 = 0 and

a3 + 4a2 � 25a� 100 = 0.

(b) Find all positive numbers x such that xx
p
x = (x

p
x)x.
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6. If x, y and z are real numbers prove that�
xjyj � yjxj

� �
yjzj � zjyj

� �
xjzj � zjxj

�
= 0:

7. x and y are integers between 10 and 100. y is the number obtained

by reversing the digits of x. If x2 � y2 = 495 �nd x and y.

8. Three points P , Q and R lie on a circle. If PQ = 4 and \PRQ =

60� what is the radius of the circle?

9. Three points are located in the �nite region between the x-axis and

the graph of the equation 2x2 + 5y = 10. Prove that at least two of these

points are within a distance 3 of each other.

10. Three circles pass through the origin. The centre of the �rst circle

lies in the �rst quadrant, the centre of the second circle lies in the second

quadrant, and the centre of the third circle lies in the third quadrant. If P

is any point that is inside all three circles, show that P lies in the second

quadrant.

Last number we gave the problems of the Mathematical Association

National Mathematics Contest 1994 from the United Kingdom. Here are the

answers.

1. C 2. E 3. C 4. D 5. E

6. B 7. A 8. D 9. B 10. B

11. B 12. E 13. E 14. A 15. A

16. C 17. D 18. C 19. B 20. B

21. C 22. B 23. E 24. B 25. E

That completes the Skoliad Corner for this issue. I need suitable contest

materials and welcome your suggestions for the evolution of this feature.
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MATHEMATICAL MAYHEM

Mathematical Mayhem began in 1988 as a Mathematical Journal for and by

High School and University Students. It continues, with the same emphasis,

as an integral part of Crux Mathematicorum with Mathematical Mayhem.

All material intended for inclusion in this section should be sent to

the Mayhem Editor, Naoki Sato, Department of Mathematics, University of

Toronto, Toronto, ON Canada M5S 1A1. The electronic address is

mayhem@math.toronto.edu

The Assistant Mayhem Editor is Cyrus Hsia (University of Toronto).

The rest of the sta� consists of Richard Hoshino (University of Waterloo), Wai

Ling Yee (University of Waterloo), and Adrian Chan (Upper Canada College).

A Journey to the Pole | Part II

Miguel Carri �on �Alvarez
student, Universidad Complutense de Madrid

Madrid, Spain

In this second (and last, for your relief) article, we look at some ad-

vanced topics like inversion or the applications of calculus to the theory of

curves.

Inversion

Inversion is a transformation determined by a point called the centre
of inversion O and an inversion ratio �k2. The image of a point P is a

point P 0 such that P 0 is on line OP and jOP 0j = �k2jOP j. It is evident

that a curve r = f(�) can be inverted by letting r = � k2

f(�)
. Inversion is

a conformal transformation, meaning that the angles between intersecting

curves are preserved. We will prove this in a later section.

Exercise 1. Prove that the inverse curve of a straight line is itself if it passes

through the origin or a circle through the origin if it does not.

Example 1. By inspection of the equations of the conic r =
de

1� e cos(� � �)
and the lima�con r = b + a cos �, it is evident that the inverse of a conic

about its focus is a lima�con. I imagine that trying to prove this theory with

synthetic geometry would result in a severe headache.

This last result provides a di�erent de�nition of conics as loci if we

invert the de�nition of the lima�con given above. Consider a circle or straight
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line and a point O not on it. Draw a circle through O tangent to the circle or

line. The diameter through O intersects the circle at P . The locus of all P 's

is a conic with O at one focus.

Tangent Lines

We leave the realm of elementary geometry to enter calculus, where we

will teach the same old dog new tricks. The �rst is how to �nd the tangent

line to a polar curve.

Our starting point will be the equation of the straight line d = r sin(��
�). The tangent line at �0 is a �rst-order approximation to the curve involv-

ing r(�0) and
dr

d�

����
�0

. Di�erentiating the equation of the straight line with

respect to � at �0, we get 0 =
dr

d�

����
�0

sin(�� �0)� r(�0) cos(�� �0), which

implies that tan(�� �0) =
r

(dr=d�)

���
�0
. This quantity can sometimes be use-

ful in itself, as �� �0 represents the angle between the radius vector and the

tangent line. We will make use of it in the next example.

The orientation � is determined from its tangent, and

tan(�� �0 + �0) =
tan(�� �0) + tan �0

1� tan(�� �0) tan �0

implies that

tan� =
r(�0) +

dr
d�
j�0 tan �0

dr
d�
j�0 � r(�0) tan �0

:

The parameter d in the equation of the tangent line is given (after some

trigonometric manipulations) by

d =
r(�0) tan(�� �0)p
1 + tan2(�� �0)

;

which gives

d =
r2(�0)p

r2(�0) + (dr=d�)2j�0
:

Example 2. Proof that inversion preserves angles. Let r = f(�) and r = g(�)

be two curves that intersect at �0. Their directions at �0 are �1 and �2, and

the angle between them satis�es

tan(�2��1) = tan(�2� �0+ �0��1) =
tan(�2� �0)� tan(�1 � �0)

1 + tan(�2 � �0) tan(�1 � �0)
:

Now, the inverted curves, r0 = 1=f(�) and r0 = 1=g(�), also intersect at �0
and their directions �01 and �

0
2 satisfy

tan(�01 � �0) =
1=f

�1
f2

�
df

d�

� =
�f

(df=d�)
= tan(�0 � �1)
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(and similarly for �02). Hence, tan(�2 � �1) = tan(�01 � �02) and we are

done.

Tangent lines through the origin

An interesting special case is when

r(�0) = 0. In that case, tan� =

tan��0 or � = �0. In words, if the

curve crosses the origin for a given

�0, the equation of the tangent line

at the origin is � = �0.

-

6

�

r

-

6

�

r

When sketching curves, a useful result is that if r(�) has an odd-order

root at �0, then the curve is smooth at the origin, but if the root is even-order,

then there is a cusp (see the �gure).

Asymptotes

d

O

�0

In certain cases r tends to in�nity for

some �nite value of �, signalling the

possibility of an asymptote. In han-

dling asymptotes, it is convenient to

consider s(�) = 1=r(�), in which

case tan(� � �0) =
�s

(ds=d�)
j�0

and tan� =

ds

d�
j�0 tan �0 � s(�0)

ds

d�
j�0 + s(�0) tan �0

.

There is a possible asymptote if

s(�0) = 0 and its equation is:

s(�) =
sin(� � �0)

d
, or

� = �0 if d = 0.

This is because, as in the case of tangent lines through the origin, the slope

of the tangent line is tan� = tan �0. The parameter d is given by

d = lim
�!�0

1p
s2(�) + (ds=d�)2

:

If this does not diverge, there is an asymptote.

When sketching curves, it is useful to know from which side of the

asymptote the curve approaches in�nity. This is achieved by studying the

sign of s(�) � 1

d
sin(� � �0), which tends to 0 at � = �0. If it tends to 0+,

the curve is closer to the origin than the asymptote (see the �gure on the

last page), and if it tends to 0�, the curve is farther from the origin than the

asymptote.

Exercise 2. Sketch the curve r = ln �, its asymptote and the tangent line at

the origin.
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Example 3. The parabola r =
1

1� cos �
satis�es lim

�!0
r(�) = 1, but it has

no asymptotes since
1p

(1� cos �0)2 + (sin�0)2
=

1p
2(1� cos �0)

, which

diverges at �0.

Arc Length

Another application of calculus is the computation of curve lengths.

Usually one would take the expression for the line element in cartesian coor-

dinates, dl2 = dx2 + dy2 and transform it to polar coordinates. To use only

polar coordinates, one could apply Pythagoras' Theorem to (dr) and (rd�).

Although this gives the right answer, it is not rigorous. A rigorous argument

that does not rely on rectangular coordinates follows.

Applying the cosine rule to side PP 0 of POP 0 (see �gure) we have

dl2 = r2(� + d�) + r2(�)� 2r(�)r(� + d�) cos(d�):

Expanding each term in a Taylor series up to the second order in d�, we get

dl2 = r2 + 2r
dr

d�
+

"�
dr

d�

�2
+ r

d2r

d�2

#
d�2

+r2 � 2r

�
r +

dr

d�
+

1

2

d2r

d�2

��
1� 1

2
d�2

�
:

Keeping terms up to second order in d� we have

dl2 =

"
r2 +

�
dr

d�

�2#
d�2:

We can thus write the expression for the

length of a curve in polar coordinates

as follows: l =

Z �

�0

s
r2 +

�
dr

d�

�2
d� =

Z �

�0

1

s2

s
s2 +

�
ds

d�

�2
d�, where s = 1

r
.

�

d�
r

r� � rd� r d�

dl

dr

O

P

P 0

Exercise 3. Derive the polar expression for arc length from the cartesian

expression dl2 = dx2 + dy2.

Curvature

It seems tautological to say that curvature is an important feature of

curves, but the fact is that a planar curve is uniquely determined (up to trans-

lations and rotations) if its curvature is known as a function of arc length.

This is generally of little practical importance, since the resulting di�eren-

tial equations can only be solved if you know the solution! We will give the

formula for curvature in terms of s(�) = l=r(�) and some applications.
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Curvature, �, can be de�ned as the rate of change of the direction of

the tangent line per unit arc length. We have

� =
d�

ds
=
d�

ds
� d�

d�
=

s2q
s2 +

�
ds
d�

�2 �
�
1 +

d(�� �)

d�

�
:

Now, tan(�� �) =
�s

(ds=d�)
, so that

d(�� �)

d�
=

d
�
arctan �s

(ds=d�)

�
d�

=
1

1 + s2

(ds=d�)

�
�
�
ds
d�

�2
+ s

�
d2s
d�2

�
(ds=d�)2

giving

� =
s2q

s2 +
�
ds
d�

�2 �
2
41 + � �ds

d�

�2
+ s

�
d2s
d�2

�
s2 +

�
ds
d�

�2
3
5

=
s2q

s2 +
�
ds

d�

�2 �
2
64s+

�
d2s
d�2

�2
s2 +

�
ds

d�

�2
3
75

=
s+

�
d2s
d�2

�
h
1 +

�
1
2
ds
d�

�2i3=2 :

In terms or r, we have

� =
r2 + 2(dr=d�)2 � r(d2r=d�2)

[r2 + (dr=d�)2]3=2
:

Example 4. If curvature is zero we obtain the di�erential equation s+s00 = 0,

with general solution s = d cos(� � �0), that is, the equation of a straight

line.

Exercise 4. Check that the curvature at each point of a lemniscate is pro-

portional to the distance to the origin. (Hint: to simplify the algebra, divide

numerator and denominator by r3 in the curvature formula above.)
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Area Enclosed by Polar Curves

d��max

O

r + dr

r

Q
0

Q

P
0

P

�

The last application of calculus is

the calculation of areas. The natu-

ral surface element is the `triangle'

de�ned by a segment of curve and

the radius vectors at the endpoints

(OPP 0 in the �gure). The area of

this triangle is, to �rst order in d�,

dA =
1

2
r2d�.

If the origin does not lie inside the curve the equation r = r(�) will have

more than one branch, as shown, and the sign of the `enclosed area' dA

depends on the orientation given to the curve. In the �gure the curve is

traversed counterclockwise, and so the outer branch (PP 0) has positive sign
(the positive sense of d� coincides with the direction of the curve) and the

inner branch (QQ0) has negative sign (the positive sense of d� as opposed

to the direction of the curve). The same applies when calculating the area

enclosed by two intersecting curves.

Example 5. As our last example, we will evaluate the area enclosed by the

circle (r� R cos �)2 = �2 � R2 sin2 �. The area is given by

A =

Z sin �=�=R

sin�=��=R

1

2
(r2+ � r2�)d�;

where r� = R cos � �
p
�2 � R2 sin2 �. We have

A =

Z
1

2
(r+ + r�)(r+ � r�)d� =

Z
2(R cos �)

q
�2 �R2 sin2 �d�:

Letting R sin � = � sin� and R cos �d� = � cos�d�, we have

A =

Z �=2

�=��=2
2�2 cos2 �d� = ��2

as expected.
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A Pattern in Permutations

John Linnell
student, University of Massachusetts

Boston, Massachusetts, USA

Let pn(k) be the number of permutations on n elements (say, n large ant-

eaters) with exactly k �xed points (i.e. a permutation which takes k elements

to themselves), so for example, p3(0) = 2, p3(1) = 3, p3(2) = 0, and

p3(3) = 1. It should be clear that

nX
k=0

pn(k) = n!, but may be not so

obvious that

nX
k=0

kpn(k) = n! (this was problem 1 on the 1987 IMO). It may

be even more surprising to learn that for n � 2,

nX
k=0

k2pn(k) = 2n!. What

kind of pattern ensues? As my old analysis prof would no doubt say, \this is

good exercise," and it is kind of fun to follow a trail like this and see where

it leads.

Based on the above results, for n � 1 and t � 0, let

Q(n; t) =
1

n!

nX
k=0

ktpn(k):

Then Q(n;0) = Q(n; 1) = 1 for all n � 1 andQ(n; 2) = 2 for all n � 2 (not

n � 1, and we will see why soon). Our �rst conjecture would probably be

then that indeed each Q(n; t) is an integer. But we will have to see a little

more before we can prove anything.

Take n = 5. Then we can make the following table:

k p5(k) kp5(k) k2p5(k) k3p5(k) k4p5(k) k5p5(k) k6p5(k)

0 44 0 0 0 0 0 0

1 45 45 45 45 45 45 45

2 20 40 80 160 320 640 1280

3 10 30 90 270 810 2430 7290

4 0 0 0 0 0 0 0

5 1 5 25 125 625 3125 15625P
120 120 240 600 1800 6240 24240P

=5! 1 1 2 5 15 52 202

Table 1.
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Thus, Q(5;0) = 1, Q(5; 1) = 1, Q(5; 2) = 2, Q(5;3) = 5, and so on.

So far so good. We can make a second table with the actual Q(n; t) values:

nnt 0 1 2 3 4 5 6

1 1 1 1 1 1 1 1

2 1 1 2 4 8 16 32

3 1 1 2 5 14 41 122

4 1 1 2 5 15 51 187

5 1 1 2 5 15 52 202

6 1 1 2 5 15 52 203

Table 2.

Now we are getting somewhere. Notice how the rows seem to converge

to a single sequence of integers, with one new term kicking in with each row.

This sequence begins1, 1, 2, 5, 15, 52, 203, : : : . I could not �nd this sequence

in any of my references, so I did what any enterprising student would do. I

sent an e-mail to sequences@research.att.com, with \lookup 1 1 2 5 15

52 203" in the body. For those not familiar, it is an on-line sequence server

that tries to solve or match any sequence you might send it; I should also

add that they ask that you send at most one request per hour. Soon enough,

I had a response, which indicated that this was a sequence known as the Bell

numbers, which satisfy

B(0) = 1; B(n+ 1) =

nX
k=0

�
n

k

�
B(k):

This recursion is striking, because if one looks at the second row of

table 2, it may remind one of the identity 2n =

nX
k=0

�
n

k

�
. Could it be? Yes,

in fact the same recursion that generates the Bell numbers is what generates

successive rows of table 2. Now we really have something.

Claim. For all n � 1 and t � 0, Q(n+ 1; t+ 1) =

tX
i=0

�
t

i

�
Q(n; i).

Proof. First, note that pn(k) =

�
n

k

�
pn�k(0) [why?]. Then

Q(n+ 1; t+ 1) =
1

(n+ 1)!

n+1X
k=0

kt+1pn+1(k)

=
1

(n+ 1)!

n+1X
k=0

kt+1

�
n+ 1

k

�
pn+1�k(0)
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=
n+ 1

(n+ 1)!

n+1X
k=1

n!

(k� 1)!(n+ 1� k)!

kt+1

k
pn+1�k(0)

=
1

n!

n+1X
k=1

kt
�

n

k� 1

�
pn+1�k(0)

=
1

n!

n+1X
k=1

ktpn(k� 1)

=
1

n!

nX
k=0

(k+ 1)tpn(k)

=
1

n!

n+1X
k=1

tX
i=0

�
t

i

�
kipn(k)

=

tX
i=0

�
t

i

� 
1

n!

nX
k=0

kipn(k)

!

=

tX
i=0

�
t

i

�
Q(n; i):

So we have proven quite a bit actually, including:

1. Each Q(n; t) is an integer (i.e.,

nX
k=0

ktpn(k) is divisible by n!), and

2. For �xed t, Q(n; t) eventually becomes B(t) for su�ciently high n.

The claim looks complicated, but we know what we want to prove, and

it turns out to be just a little algebraic manipulation. So in the end, we have

a nice result from a simple observation.



161

IMO CORRESPONDENCE PROGRAM

Canadian students wishing to participate in this program should �rst

contact Professor Edward J. Barbeau, Department of Mathematics, Univer-

sity of Toronto, Toronto, Ontario. Please note that there is a fee for par-

ticipation in the program: $12. Please make the cheque payable to Edward

J. Barbeau.

PROBLEM SET 1

Algebra

1. Solve the system of equations

x2 + 2yz = x;

y2 + 2xz = z;

z2 + 2xy = y:

2. Let m be a real number. Solve, for x, the equation

jx2 � 1j+ jx2 � 4j = mx:

3. Let fx1; x2; : : : ; xn; : : : g be a sequence of nonzero real numbers. Show

that the sequence is an arithmetic progression if and only if, for each

integer n � 2,

1

x1x2
+

1

x2x3
+ � � �+ 1

xn�1xn
=
n� 1

x1xn
:

4. Suppose that x and y are two unequal positive real numbers. Let

r =

�
x2 + y2

2

�1=2
g = (xy)1=2

a =
x+ y

2
h =

2xy

x+ y
:

Which of the numbers r�a, a�g, g�h is largest and which is smallest?

5. Simplify

x3 � 3x+ (x2 � 1)
p
x2 � 4� 2

x3 � 3x+ (x2 � 1)
p
x2 � 4 + 2

to a fraction whose numerator and denominator are of the form u
p
v

with u and v each linear polynomials. For which values of x is the

equation valid?
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6. Prove or disprove: if x and y are real numbers with y � 0 and

y(y+ 1) � (x+ 1)2, then y(y� 1) � x2.

7. X is a collection of objects upon which the operation of addition, sub-

traction and multiplication are de�ned so as to satisfy the following

axioms:

(1) if x; y belong to X, then x+ y and xy both belong to X;

(2) for all x; y in X, x+ y = y+ x;

(3) for all x; y; z inX, x+ (y+ z) = (x+ y) + z and x(yz) = (xy)z;

(4) for all x; y; z in x, x(y + z) = xy + xz;

(5) there is an element 0 such that 0+x = x+0 = x and for each x inX,

there exists a unique element denoted by �x for which x+ (�x) = 0;

(6) x� y = x+ (�y) for each pair x; y of elements of X;

(7) x3 � x = x+ x+ x = 0 for x in X.

Note that these axioms do not rule out the possibility that the product

of two non-zero elements of X may be zero, and so it may not be valid

to cancel terms.

On X, we de�ne a relation � by the following condition:

x � y if and only if x2y � xy2 � xy + x2 = 0.

Prove that the following properties obtain:

(i) x � x for each element x of X;

(ii) if x � y and y � x, then x = y;

(iii) if x � y and y � z, then x � z.

8. Let n be a positive integer and suppose that u and v are positive real

numbers. Determine necessary and su�cient conditions on u and v

such that there exist real numbers a1; a2; : : : ; an satisfying

a1 � a2 � � � � � an � 0

u = a1 + a2 + � � �+ an

v = a21 + a22 + � � �+ a2n:

When such a representation is possible, determine the maximum and

minimum values of a1.

9. Suppose that x + 1

y
= y + 1

z
= z + 1

x
= t, where x; y; z are not all

equal. Determine xyz.

10. Let a � 0. The polynomial x3 � ax + 1 has three distinct real roots.

For which values of a does the root u of least absolute value satisfy
1
a
< u < 2

a
?
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11. Determine the range of values of cd subject to the constraints ab = 1,

ac+ bd = 2, where a, b, c, d are real.

12. Find polynomials p(x) and q(x) with integer coe�cients such that

p(
p
2 +

p
3 +

p
5)

q(
p
2 +

p
3 +

p
5)

=
p
2 +

p
3:

Mayhem Problems

The Mayhem Problems editors are:

Cyrus Hsia Mayhem Advanced Problems Editor,
Richard Hoshino Mayhem High School Problems Editor,
Ravi Vakil Mayhem Challenge Board Problems Editor.

Note that all correspondence should be sent to the appropriate editor |

see the relevant section. In this issue, you will �nd only problems | the

next issue will feature only solutions.

We warmly welcome proposals for problems and solutions. With the

new schedule of eight issues per year, we request that solutions to the new

problems in this issue be submitted by 1 August 1997, for publication in the

issue 5 months ahead; that is, issue 8. We also request that only students

submit solutions (see editorial [1997: 30]), but we will consider particularly

elegant or insightful solutions from others. Since this rule is only being im-

plemented now, you will see solutions from many people in the next few

months, as we clear out the old problems from Mayhem.



164

High School Problems

Editor: Richard Hoshino, 17 Norman Ross Drive, Markham, Ontario,

Canada. L3S 3E8 <rhoshino@undergrad.math.uwaterloo.ca>

There is a correction forH220; the expression 2n� T

S
should be 2n� T

S
.

H221. Let P = 195 +6605 +13165. It is known that 25 is one of the

forty-eight positive divisors of P . Determine the largest divisor of P that is

less than 10; 000.

H222. McGregor becomes very bored one day and decides to write

down a three digit number ABC, and the six permutations of its digits. To

his surprise, he �nds thatABC is divisible by 2,ACB is divisible by 3,BAC

is divisible by 4, BCA is divisible by 5, CAB is divisible by 6, and CBA is

a divisor of 1995. Determine ABC.

H223. There are n black marbles and two red marbles in a jar. One by

one, marbles are drawn at random out of the jar. Jeanette wins as soon as

two black marbles are drawn, and Fraserette wins as soon as two red marbles

are drawn. The game continues until one of the two wins. Let J(n) and F (n)

be the two probabilities that Jeanette and Fraserette win, respectively.

1. Determine the value of F (1) + F (2) + � � �+ F (3992).

2. As n approaches in�nity, what does J(2)� J(3)� J(4)� � � � � J(n)

approach?

H224. Consider square ABCD with side length 1. Select a point M

exterior to the square so that \AMB is 90�. Let a = AM and b = BM .

Now, determine the point N exterior to the square so that CN = a and

DN = b. Find, as a function of a and b, the length of line segmentMN .

N

C B

M

AD

b

a



165

Advanced Problems

Editor: Cyrus Hsia, 21 Van Allan Road, Scarborough, Ontario, Canada.

M1G 1C3 <hsia@math.toronto.edu>

A197. Calculate Z �

2

� �

2

sin(2N + 1)�

sin�
d�;

where N is a non-negative integer.

A198. Given positive real numbers a, b, and c such that a+ b+ c = 1,

show that aabbcc + abbcca + acbacb � 1.

A199. Let P be a point inside triangle ABC. Let A0, B0, and C0 be
the re
ections of P through the sides BC, AC, and AB respectively. For

what points P are the six points A, B, C, A0, B0, and C0 concyclic?

A200. Given positive integers n and k, for 0 � i � k � 1, let

Sn;k;i =
X

j�i (mod k)

�
n

j

�
:

Do there exist positive integers n, k > 2, such that Sn;k;0, Sn;k;1, : : : ,

Sn;k;k�1 are all equal?

Challenge Board Problems

Editor: Ravi Vakil, Department of Mathematics, One Oxford Street,

Cambridge, MA, USA. 02138-2901 <ravi@math.harvard.edu>

There are no new Challenge Board Problems this month | we reprint

those from issue 1 this year [1997: 44]'

C70. Prove that the group of automorphisms of the dodecahedron

is S5, the symmetric group on �ve letters, and that the rotation group of

the dodecahedron (the subgroup of automorphisms preserving orientation)

is A5.

C71. Let L1, L2, L3, L4 be four general lines in the plane. Let pij be

the intersection of lines Li and Lj. Prove that the circumcircles of the four

triangles p12p23p31, p23p34p42, p34p41p13, p41p12p24 are concurrent.

C72. A �nite group G acts on a �nite set X transitively. (In other

words, for any x; y 2 X, there is a g 2 G with g � x = y.) Prove that there

is an element of G whose action on X has no �xed points.
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PROBLEMS

Problem proposals and solutions should be sent to Bruce Shawyer, De-
partment ofMathematics and Statistics,Memorial University of Newfound-
land, St. John's, Newfoundland, Canada. A1C 5S7. Proposals should be ac-
companied by a solution, together with references and other insights which
are likely to be of help to the editor. When a submission is submitted with-
out a solution, the proposer must include su�cient information on why a
solution is likely. An asterisk (?) after a number indicates that a problem
was submitted without a solution.

In particular, original problems are solicited. However, other inter-
esting problems may also be acceptable provided that they are not too well
known, and references are given as to their provenance. Ordinarily, if the
originator of a problem can be located, it should not be submitted without
the originator's permission.

To facilitate their consideration, please send your proposals and so-
lutions on signed and separate standard 81

2
"�11" or A4 sheets of paper.

These may be typewritten or neatly hand-written, and should be mailed to
the Editor-in-Chief, to arrive no later than 1 November 1997. They may also
be sent by email to crux-editors@cms.math.ca. (It would be appreciated if
email proposals and solutions were written in LATEX). Graphics �les should
be in epic format, or encapsulated postscript. Solutions received after the
above date will also be considered if there is su�cient time before the date
of publication.

2226. Proposed by K.R.S. Sastry, Dodballapur, India.

An old man willed that, upon his death, his three sons would receive

the u'th, v'th, w'th parts of his herd of camels respectively. He had uvw�1

camels in the herd when he died. Obviously, their sophisticated calculator

could not divide uvw � 1 exactly into u, v or w parts. They approached a

distinguished CRUX problem solver for help, who rode over on his camel,

which he added to the herd and then ful�lled the old man's wishes, and took

the one camel that remained, which was, of course, his own.

Dear CRUX reader, how many camels were there in the herd?

2227. Proposed by Joaqu��n G �omez Rey, IES Luis Bu ~nuel, Alcorc �on,
Madrid, Spain.

Evaluate Y
p

" 1X
k=0

�
2k

k

�
(2p)2k

#
:

where the product is extended over all prime numbers.
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2228. Proposed by Waldemar Pompe, student, University of War-
saw, Poland.

Let A be the set of all real numbers from the interval (0; 1) whose dec-

imal representation consists only of 1's and 7's; that is, let

A =

( 1X
k=1

ak

10k
: ak 2 f1; 7g

)
:

Let B be the set of all reals that cannot be expressed as �nite sums of mem-

bers of A. Find supB.

2229. Proposed by Kenneth Kam Chiu Ko, Mississauga, Ontario.

(a) Letm be any positive integer greater than 2, such that x2 � 1 (mod m)

whenever (x;m) = 1.

Let n be a positive integer. Ifmjn+1, prove that the sum of all divisors

of n is divisible bym.

(b)
?

Find all possible values ofm

2230. Proposed by Waldemar Pompe, student, University of War-
saw, Poland.

Triangles BCD and ACE are constructed outwardly on sides BC and

CA of triangle ABC such that AE = BD and \BDC + \AEC = 180�.
The point F is chosen to lie on the segment AB so that

AF

FB
=
DC

CE
:

Prove that
DE

CD+ CE
=

EF

BC
=

FD

AC
:

2231. Proposed byHerbert G �ulicher,WestfalischeWilhelms-Univer-
sit�at, M�unster, Germany.

In quadrilateral P1P2P3P4, suppose that the diagonals intersect at the

point M 6= Pi (i = 1; 2; 3; 4). Let \MP1P4 = �1, \MP3P4 = �2,

\MP1P2 = �1 and \MP3P2 = �2.

Prove that

�13 :=
jP1M j
jMP3j

=
cot�1 � cot�1

cot�2 � cot�2
;

where the+(�) sign holds if the line segment P1P3 is located inside (outside)

the quadrilateral.
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2232. Proposed by �Sefket Arslanagi�c, University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina.

Find all solutions of the inequality:

n2 + n� 5 <

�
n

3

�
+

�
n+ 1

3

�
+

�
n+ 2

3

�
< n2 + 2n� 2; (n 2 N):

(Note: If x is a real number, then bxc is the largest integer not exceeding x.)
2233. Proposed byWalther Janous, Ursulinengymnasium, Innsbruck,

Austria.

Let x, y, z be non-negative real numbers such that x+ y+ z = 1, and

let p be a positive real number.

(a) If 0 < p � 1, prove that

xp + yp+ zp � Cp

�
(xy)p+ (yz)p+ (zx)p

�
;

where

Cp =

(
3p if p � log 2

log 3�log 2 ;
2p+1 if p � log 2

log 3�log 2 :

(b)
?

Prove the same inequality for p > 1.

Show that the constant Cp is best possible in all cases.

2234. Proposed by Victor Oxman, University of Haifa, Haifa, Israel.

Given triangle ABC, its centroid G and its incentre I, construct, using

only an unmarked straightedge, its orthocentre H.

2235. Proposed byWalther Janous, Ursulinengymnasium, Innsbruck,
Austria.

Triangle ABC has angle \CAB = 90�. Let �1(O;R) be the circum-

circle and �2(T; r) be the incircle. The tangent to �1 at A and the polar line

of A with respect to �2 intersect at S. The distances from S to AC and AB

are denoted by d1 and d2 respectively.

Show that

(a) STkBC,

(b) jd1 � d2j = r.

[For the bene�t of readers who are not familiar with the term \polar line", we

give the following de�nition as in, for example,Modern Geometries, 4th Edi-
tion, by James R. Smart, Brooks/Cole, 1994:

The line through an inverse point and perpendicular to the line joining
the original point to the centre of the circle of inversion is called the polar of
the original point, whereas the point itself is called the pole of the line.]
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2236. Proposed by Victor Oxman, University of Haifa, Haifa, Israel.

Let ABC be an arbitrary triangle and let P be an arbitrary point in the

interior of the circumcircle of 4ABC. Let K, L, M , denote the feet of the

perpendiculars from P to the lines AB, BC, CA, respectively.

Prove that [KLM ] � [ABC]

4
.

Note: [XY Z] denotes the area of 4XY Z.
2237. Proposed by Meletis D. Vasiliou, Elefsis, Greece.

ABCD is a square with incircle �. Let ` be a tangent to �. Let A0, B0,
C0, D0 be points on ` such that AA0, BB0, CC0, DD0 are all perpendicular

to `.

Prove that AA0 � CC0 = BB0 �DD0.

Correction

2173. Proposed byWalther Janous, Ursulinengymnasium, Innsbruck,
Austria.

Let n � 2 and x1; : : : ; xn > 0 with x1 + : : :+ xn = 1.

Consider the terms

ln =

nX
k=1

(1 + xk)

s
1� xk

xk

and

rn = Cn

nY
k=1

1 + xkp
1� xk

where

Cn = (
p
n� 1)n+1(

p
n)n=(n+ 1)n�1:

[Ed: there is no x in the line above.]

1. Show l2 � r2.

2. Prove or disprove: ln � rn for n � 3.
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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased to
consider for publication new solutions or new insights on past problems.

1940. [1994: 108; 1995: 107; 1995: 205; 1996: 321] Proposed by Ji
Chen, Ningbo University, China.

Show that if x; y; z > 0,

(xy + yz+ zx)

�
1

(x+ y)2
+

1

(y+ z)2
+

1

(z + x)2

�
� 9

4
:

Solution by Marcin E. Kuczma, Warszawa, Poland.
Let F be the expression on the left side of the proposed inequality.

Assume without loss of generality x � y � z � 0, with y > 0 (not excluding

z = 0), and de�ne:

A = (2x+ 2y � z)(x� z)(y� z) + z(x+ y)2;

B = (1=4)z(x+ y � 2z)(11x+ 11y+ 2z);

C = (x+ y)(x+ z)(y+ z);

D = (x+ y + z)(x+ y � 2z) + x(y � z) + y(x� z) + (x� y)2;

E = (1=4)(x+ y)z(x+ y+ 2z)2(x+ y� 2z)2:

It can be veri�ed that

C2(4F � 9) = (x� y)2
�
(x+ y)(A+ B + C) + (x+ z)(y+ z)D=2

�
+ E:

This proves the inequality and shows that it becomes an equality only

for x = y = z and for x = y > 0, z = 0.

Comment.

The problem is memorable for me! It was my \solution" [1995: 107]

that appeared �rst. According to someone's polite opinion it was elegant,

but according to the impolite truth, it was wrong. I noticed the fatal error

when it was too late to do anything; the issue was in print already.

In [1995: 205] a (correct) solution by Kee-Wai Lau appeared. Mean-

while I found two other proofs, hopefully correct, and sent them to the ed-

itor. Like Kee-Wai Lau's, they required the use of calculus and were lacking

\lightness", so to say, so the editor asked [1995:206] for a \nice" solution.

I became rather sceptical about the possibility of proving the result by those

techniques usually considered as \nice", such as convexity/majorization ar-

guments | just because the inequality turns into equality not only for

x = y = z, but also for certain boundary con�gurations.

In response to the editor's prompt, VedulaMurty [1996: 321] proposed

a short proof avoiding hard calculations. But I must frankly confess that I do
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not understand its �nal argument: I do not see why the sum of the �rst two

terms in [1996: 321(3)] must be non-negative. While trying to clarify that, I

arrived at the proof which I present here.

This proof can be called anything but \nice"! Decomposition into sums

and products of several expressions, obviously nonnegative, and equally ugly,

has the advantage that it provides a proof immediately understood and ver-

i�ed if one uses some symbolic calculation software (with some e�ort, the

formula can be checked even by hand). But the striking disadvantage of such

formulas is that they carefully hide from the reader all the ideas that must

have led to them; they take the \background mathematics" of the reasoning

away. In the case at hand I only wish to say that the equality I propose here

has been inspired by Murty's brilliant idea to isolate the polynomial that

appears as the third term in [1996: 321(3)] and to deal with the expression

that remains.

I once overheard a mathematician problemist claiming lack of sympathy

to inequality problems. In the ultimate end, he said, they all reduce to the

only one fundamental inequality, which is x2 � 0!

2124. [1996: 77] Proposed by Catherine Shevlin, Wallsend, England.

Suppose that ABCD is a quadrilateral with \CDB = \CBD = 50�

and \CAB = \ABD = \BCD. Prove that AD ? BC.

A B

C

D

I. Solutionby FlorianHerzig, student, Perchtoldsdorf, Austria. (Essentially
identical solutionswere submitted by Jordi Dou, Barcelona, Spain and Hans
Engelhaupt, Franz{Ludwig{Gymnasium, Bamberg, Germany. The solution
by Carl Bosley, student, Washburn Rural High School, Topeka, Kansas, USA
was very similar.)

Let F1 and F2 be the feet of the perpendiculars from D and A to BC

respectively. Let p = BC = CD and q = AC. Then, applying the Sine Rule

to 4ABC, we have

CF1 = p cos 80�; CF2 = q cos 70� =
p sin 30�

sin80�
=
p cos 70�

2 sin 80�
:
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Thus we have

CF1

CF2
=

cos80�
cos 70�

2 sin 80�

=
2 sin80� cos 80�

cos 70�
=

sin160�

sin20�
= 1:

Thus, F1 = F2, and this point is the intersection of AD and BC, whence

AD ? BC.

II. Solution by Federico Ardila, student, Massachusetts Institute of
Technology, Cambridge, Massachusetts, USA.

Consider a regular 18{gon P1P2 : : : P18.

q

q

q

q

qq

q

q

q

q

q

q

q

q q

q

q

q

P1

P2

P3

P4

P5 P6
P7

P8

P9

P10

P11

P12

P13
P14P15

P16

P17

P18

Qq

We will �rst show that P1P10,

P2P12 and P4P15 concur.

By symmetry, P1P10, P4P15 and

P5P16 are concurrent. Thus it

is su�cient to prove that P1P10,

P2P12 and P5P16 are concurrent.

Using the angles version of Ceva's

theorem in triangle 4P1P5P12, it
if su�cient to prove that

sin(\P1P12P2)

sin(\P2P12P5)
� sin (\P12P5P16)
sin(\P16P5P1)

� sin (\P5P1P10)

sin(\P10P1P12)
= 1;

or
sin(10�)

sin(30�)
� sin(40

�)

sin(30�)
� sin(50

�)

sin(20�)
= 1:

But this is true since

sin 10� sin40� sin 50� = sin10� sin 40� cos 40�

= sin10�
�
sin80�

2

�
=

sin10� cos 10�

2

=
sin20�

4
= (sin30�)2 sin20�:

So, P1P10, P2P12 and P4P15 concur at, say, Q.

Using this, it is easy to check that

\P2P4Q = \P4QP2 = 50�;

and

\P2P1Q = \P4QP1 = \QP2P4 (= 80�):

This information clearly determines the quadrilateral P1P2P4Q up to simi-

larity, so P1P2P4Q � ACDB.
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Since P1P4 ? P2Q, it follows that AD ? BC.

Also solved by CLAUDIO ARCONCHER, Jundia��, Brazil; �SEFKET
ARSLANAGI �C, University of Sarajevo, Sarajevo, Bosnia and Herzegovina;
SAM BAETHGE, Science Academy, Austin, Texas, USA; CHRISTOPHER J.
BRADLEY, Clifton College, Bristol, UK; TIM CROSS, King Edward's School,
Birmingham, England; CHARLES R. DIMINNIE, Angelo State University,
San Angelo, TX, USA; DAVID DOSTER, Choate Rosemary Hall, Wallingford,
Connecticut,USA; RICHARD I. HESS, Rancho Palos Verdes, California, USA;
PETER HURTHIG, Columbia College, Burnaby, BC; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; V �ACLAV KONE �CN �Y, Ferris State
University, Big Rapids, Michigan, USA; MITKO KUNCHEV, Baba Tonka
School of Mathematics, Rousse, Bulgaria; KEE-WAI LAU, Hong Kong;
P. PENNING, Delft, the Netherlands; TOSHIO SEIMIYA, Kawasaki, Japan;
D.J. SMEENK, Zaltbommel, the Netherlands; PANOS E. TSAOUSSOGLOU,
Athens, Greece; MELETIS VASILIOU, Elefsis, Greece (two solutions); and
the proposer.

The proposer writes: The genesis of this problem lies in a question

asked by Junji Inaba, student, William Hulme's Grammar School, Manch-

ester, England, inMathematical Spectrum, vol. 28 (1995/6), p. 18. He gives

the diagram in my question, with the given information:

\CDA = 20�; \DAB = 60�;
\DBC = 50�; \CBA = 30�;

and asks the question: \can any reader �nd \CDB without trigonometry?"

In fact, such a solution was given in the next issue of Mathematics Spec-

trum by Brian Stonebridge, Department of Computer Science, University of

Bristol, Bristol, England.

The genesis of the diagram is much older, if one produces BD and AC to

meet at E. See Mathematical Spectrum, vol. 27 (1994/5), pp. 7 and 65{

66. In one reference, the question of �nding \CDA is called \Mahatma's

Puzzle", but no reference was available. Can any reader enlighten me on the

origin of this puzzle?

2125. [1996: 122] Proposed by Bill Sands, University of Calgary,
Calgary, Alberta.

At Lake West Collegiate, the lockers are in a long rectangular array,

with three rows of N lockers each. The lockers in the top row are numbered

1 to N , the middle row N +1 to 2N , and the bottom row 2N +1 to 3N , all

from left to right. Ann, Beth, and Carol are three friends whose lockers are

located as follows:
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: : : : : :

��@@

��@@

��@@

By the way, the three girls are not only friends, but also next-door

neighbours, with Ann's, Beth's, and Carol's houses next to each other (in that

order) on the same street. So the girls are intrigued when they notice that

Beth's house number divides into all three of their locker numbers. What is

Beth's house number?

Solution by Han Ping Davin Chor, student, Cambridge, MA, USA.

From the diagram, it can be observed that the lockers have numbers

x+ 3; N + x+ 5 and 2N + x;

where 1 � x � N , x a positive integer. Here locker x+3 is in the �rst row,

locker N +x+5 is in the second row, and locker 2N +x is in the third row.

Let y be Beth's house number, where y is a positive integer. Since y divides

into x+ 3, N + x+ 5 and 2N + x, y must divide into

2(N + x+ 5)� (2N + x)� (x+ 3) = 7:

Therefore y = 1 or 7. However, Beth's house is in between Ann's and

Carol's. Assuming that 0 is not assigned as a house number, it means that

Beth's house number cannot be 1 (else either Ann or Carol would have a

house number of 0). Therefore Beth's house number is 7.

Also solved by SAM BAETHGE, Science Academy, Austin, Texas, USA;
CHRISTOPHER J. BRADLEY, Clifton College, Bristol, UK; TIM CROSS, King
Edward's School, Birmingham, England; CHARLES R. DIMINNIE, Angelo
State University, San Angelo, TX, USA; HANS ENGELHAUPT, Franz{Lud-
wig{Gymnasium, Bamberg, Germany; J. K. FLOYD, Newnan, Georgia, USA;
IAN JUNE L. GARCES, Ateneo deManila University,Manila, the Philippines,
and GIOVANNI MAZZARELLO, Ferrovie dello Stato, Firenze, Italy; SHAWN
GODIN, St. Joseph Scollard Hall, North Bay, Ontario; FLORIAN HERZIG,
student, Perchtoldsdorf, Austria; RICHARD I. HESS, Rancho Palos Verdes,
California, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Aus-
tria; KATHLEEN E. LEWIS, SUNY Oswego, Oswego, New York, USA;
DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA; JOHN GRANT
MCLOUGHLIN, Okanagan University College, Kelowna, B. C.; P. PENNING,
Delft, the Netherlands; GOTTFRIED PERZ, Pestalozzigymnasium, Graz, Aus-
tria; CORY PYE, student,Memorial University of Newfoundland, St. John's,
Newfoundland; JOEL SCHLOSBERG, student, Hunter College High School,
New York NY, USA; ROBERT P. SEALY, Mount Allison University, Sackville,
New Brunswick; HEINZ-J�URGEN SEIFFERT, Berlin, Germany; DAVID
STONE, Georgia Southern University, Statesboro, Georgia, USA; EDWARD
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T.H. WANG, Wilfrid Laurier University, Waterloo, Ontario; KENNETH M.
WILKE, Topeka, Kansas, USA; and the proposer.

Two solvers eliminated 1 as a possible answer, because the problem
said that the girls were \intrigued" that Beth's house number divided all
their locker numbers, which would hardly be likely if Beth's house number
were just 1! Thus they didn't need the information about the location of
Beth's house at all. Another solver, to whom the editor has therefore given
the bene�t of the doubt,merely stated that \the locationof Ann's and Carol's
houses doesn't enter into the problem".

2126. [1996: 123] Proposed by Bill Sands, University of Calgary,
Calgary, Alberta.

At Lake West Collegiate, the lockers are in a long rectangular array, with

three rows ofN lockers each, whereN is some positive integer between 400

and 450. The lockers in the top row were originally numbered 1 to N , the

middle row N + 1 to 2N , and the bottom row 2N + 1 to 3N , all from left

to right. However, one evening the school administration changed around

the locker numbers so that the �rst column on the left is now numbered 1

to 3, the next column 4 to 6, and so forth, all from top to bottom. Three

friends, whose lockers are located one in each row, come in the next morning

to discover that each of them now has the locker number that used to belong

to one of the others! What are (were) their locker numbers, assuming that

all are three-digit numbers?

Solution by Ian June L. Garces, Ateneo de Manila University, Manila,
the Philippines, and GiovanniMazzarello, Ferrovie dello Stato, Firenze, Italy.

The friends' locker numbers are 246, 736 and 932.

To show this, �rst consider any particular locker. Then the original

(before the change) number of this locker can be written as iN + j, where

0 � i � 2 (the row) and 1 � j � N (the column). With respect to this

original locker number, this particular locker has a new (after the change)

number 3(j � 1) + (i+ 1) = 3j + i� 2.

Consider now the three friends' lockers. Since the three lockers are

located one in each row, we can let them be j1, N + j2 and 2N + j3 where

1 � j1; j2; j3 � N . For each of these lockers, the corresponding new locker

numbers will be 3j1�2, 3j2�1 and 3j3. Then there will be two possibilities

for how their original locker numbers and their new locker numbers were

\properly" interchanged:

Possibility 1. The �rst possibility is when

j1 = 3j3; (1)

N + j2 = 3j1 � 2; (2)
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2N + j3 = 3j2 � 1: (3)

Substituting (1) into (2) and solving for j2, we have j2 = 9j3 � 2 � N .

Substituting this last equality into (3) and solving for j3, we have

j3 =
5N + 7

26

which implies that N � 9 mod 26. Choosing N between 400 and 450, we

have the uniqueN = 425 and thus j3 = 82, j2 = 311 and j1 = 246. Hence

the original locker numbers are 246, 736 and 932 which, after the change,

will respectively be 736, 932 and 246 which satisfy what we want.

Possibility 2. The other possibility is when

j1 = 3j2� 1; N + j2 = 3j3; 2N + j3 = 3j1 � 2:

Similar computation as in Possibility 1 yields N = 425, j2 = 115, j3 = 180

and j1 = 344. But this means that one of the lockers will have number 1030

which is contrary to the assumption.

Therefore, the only possible locker numbers of the three friends are

246, 736 and 932.

Also solved by SAM BAETHGE, Science Academy, Austin, Texas, USA;
CHRISTOPHER J. BRADLEY, Clifton College, Bristol, UK; JOSEPH
CALLAGHAN, student, University of Waterloo, Waterloo, Ontario; HAN
PING DAVIN CHOR, student, Cambridge, MA, USA; TIM CROSS, King Ed-
ward's School, Birmingham, England; CHARLES R. DIMINNIE, Angelo State
University, San Angelo, TX, USA; HANS ENGELHAUPT, Franz{Ludwig{Gym-
nasium, Bamberg, Germany; SHAWNGODIN, St. Joseph ScollardHall, North
Bay, Ontario; RICHARD I. HESS, Rancho Palos Verdes, California, USA;
PETER HURTHIG, Columbia College, Burnaby, BC; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; KATHLEEN E. LEWIS, SUNY
Oswego, Oswego, New York, USA; DAVID E. MANES, SUNY at Oneonta,
Oneonta, NY, USA; P. PENNING, Delft, theNetherlands; GOTTFRIED PERZ,
Pestalozzigymnasium, Graz, Austria; ROBERT P. SEALY, Mount Allison Uni-
versity, Sackville, New Brunswick; DAVID STONE, Georgia Southern Uni-
versity, Statesboro, Georgia, USA; and the proposer.

Many solvers mentioned that the other set of locker numbers arising
from the problem is 344, 540 and 1030. Some remarked that the value ofN
was 425 in both cases. However, apparently nobody noticed that these two
triples of numbers enjoy a curious relationship:

246 + 1030 = 736 + 540 = 932 + 344 !

So now readers are challenged to �gure out why this relationship is true.

When N = 425, the problem says that the numbers 246; 736;932 are
interchanged when the lockers are renumbered. So let's call this set of num-
bers a \swapset" for N = 425; that is, for a particular N , a swapset is
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any set of numbers which get swapped among each other by the renumber-
ing. We want true swapping; so we don't allow the sets f1g or f3Ng (or
the \middle" locker f(3N+1)=2g whenN is odd), which are obviously un-
changed by the renumbering, to be in swapsets. Lots of problems concerning
swapsets could be looked at. For example, one of the solvers (Stone) points
out that there are no swapsets of two numbers when N = 425, but there
are when N = 427: lockers 161 and 481 get swapped. Which values of N
have swapsets of size two? Here's another problem. It's clear that the set
of all numbers from 1 to 3N , minus the two or three numbers that stay the
same, will be a swapset for every N . But are there any numbers N which
have no other swapsets? If so, can you describe all suchN?

2127. [1996: 123] Proposed by Toshio Seimiya, Kawasaki, Japan.
ABC is an acute triangle with circumcentre O, andD is a point on the

minor arc AC of the circumcircle (D 6= A;C). Let P be a point on the side

AB such that \ADP = \OBC, and let Q be a point on the side BC such

that \CDQ = \OBA. Prove that\DPQ = \DOC and\DQP = \DOA.

Solution by Florian Herzig, student, Perchtoldsdorf, Austria.
First I prove that B is an excentre of4PDQ.

\ABC = 180� � \ADC

= 180� � (\ADP + \CDQ+ \PDQ)

= 180� � (\CBO+ \ABO + \PDQ)

= 180� � \ABC � \PDQ; (1)

) \ABC = 90� � \PDQ

2
;

\PDB = \ADB � \ADP = \ACB � \OCB = \ACO;

and

\QDB = \CDB � \CDQ = \CAB � \OAB = \CAO:

Since 4OAC is isosceles, we have that \PDB = \QDB and thus BD is

the internal angle bisector of \PDQ. (2)

What is more, we know that, in any4XY Z, the excentre, M , (whose

excircle touches Y Z), is exactly the point on the internal angle bisector of

\Y XZ outside the triangle for which

\YMZ = 180� � \MZY � \MY Z

=
\Y

2
+
\Z

2
=

180� � \X

2
= 90� � \X

2
:

Therefore B is an excentre of4PDQ because of (1) and (2). Then BP

and BQ are the external angle bisectors of \DPQ and \DQP , respectively,

whence

\APD = \BPQ and \CQD = \BQP: (3)
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Starting with

\BOC = 2\BDC

we obtain

180� � 2\OBC = 2\BDC;

90� � \OBC = \BDC;

180� � \BDC = 90� + \OBC;

\BCD + \DBC = 90� + \ADP;

(180� � \DAP ) + \DBC = 90� + (180� � \DAP � \APD);

\DBC = 90� � \APD;

\DOC = 180� � (\APD + \BPQ)

[ because of (3) ]

= \DPQ;

and analogously \DOA = \DQP:

Also solved by CHRISTOPHER J. BRADLEY, Clifton College, Bristol,
UK; HAN PING DAVIN CHOR, student, Cambridge, MA, USA; P.
PENNING, Delft, the Netherlands; WALDEMAR POMPE, student, Univer-
sity of Warsaw, Poland; D.J. SMEENK, Zaltbommel, the Netherlands; and
the proposer.

2128. [1996: 123] Proposed by Toshio Seimiya, Kawasaki, Japan.
ABCD is a square. Let P and Q be interior points on the sides BC

and CD respectively, and let E and F be the intersections of PQ with AB

and AD respectively. Prove that

� � \PAQ+ \ECF <
5�

4
:

Solution by Heinz-J �urgen Sei�ert, Berlin, Germany.
In cartesian coordinates, let A = (0; 0), B = (1; 0), C = (1; 1),

D = (0; 1), P = (1; p) and Q = (q;1), where 0 < p; q < 1:

Then E =
�
1�pq
1�p ; 0

�
and F =

�
0; 1�pq

1�q
�
, tan\PAB = p, tan\DAQ = q,

tan\DCF = FD =
q(1�p)
1�q , tan\BCE = BE =

p(1�q)
1�p .

Since

\PAQ =
�

2
� \PAB � \DAQ and \ECF =

�

2
+ \DCF + \BCE;

it follows that

\PAQ+ \ECF

= � + arctan
q(1 � p)

1� q
� arctan q + arctan

p(1 � q)

1� p
� arctan p

= � + arctan

�
(1� pq)(p� q)2

(1� p)(1� q)(1� pq)2 + (p(1 � q)2 + q(1� p)2)(p+ q)

�
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by the addition formula for arctangents. Since 0 < p; q < 1, it su�ces to

show that

0 � (1� pq)(p� q)2 < (p(1� q)2 + q(1� p)2)(p+ q):

The left inequality is obviously true, while the right follows from the identity

(p(1�q)2+q(1�p)2)(p+q) = (1�pq)(p�q)2+2pq((1�p)2+(1�q)2):

Also solved by �SEFKET ARSLANAGI �C, University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina; NIELS BEJLEGAARD, Stavanger, Norway;
FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain;
CHRISTOPHER J. BRADLEY, Clifton College, Bristol, UK; JOSEPH
CALLAGHAN, student, University of Waterloo; RICHARD I. HESS, Rancho
Palos Verdes, California, USA; VICTOR OXMAN, University of Haifa, Haifa,
Israel; and the proposer.

2130. [1996: 123] Proposed by D.J. Smeenk, Zaltbommel, the Neth-
erlands.

A and B are �xed points, and ` is a �xed line passing through A. C is a

variable point on `, staying on one side of A. The incircle of�ABC touches

BC at D and AC at E. Show that lineDE passes through a �xed point.

SolutionbyMitko Kunchev, Baba Tonka School ofMathematics, Rousse,
Bulgaria.

We choose the point P on ` with AP = AB. Let C be an arbitrary

point of `, di�erent from P but on the same side ofA. The incircle of4ABC
touches the sides BC, AC, AB in the points D, E, F respectively. Let

ED meet PB in the point Q. According to Menelaus' Theorem applied to

4CBP and the collinear points E, D, Q, we get

PE

EC
� CD
DB

� BQ
QP

= 1: (1)

We have EC = CD (because they are tangents from C). Similarly,

AF = AE, so that FB = EP (since AB = AP ). But also, FB = DB, so

that DB = PE. Setting EC = CD and DB = PE in (1), we conclude that

BQ = QP ; therefore Q is the mid-point of BP . Hence the line DE passes

through the �xed point Q.

Also solved by NIELS BEJLEGAARD, Stavanger, Norway; FRANCISCO
BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain; CHRISTOPHER
J. BRADLEY, CliftonCollege, Bristol, UK; FLORIANHERZIG, student, Perch-
toldsdorf, Austria; RICHARD I. HESS, Rancho Palos Verdes, California, USA;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria;
P. PENNING, Delft, the Netherlands; TOSHIO SEIMIYA, Kawasaki, Japan;
PAUL YIU, Florida Atlantic University, Boca Raton, Florida, USA (two sol-
utions); and the proposer.
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Seimiya and Yiu used the same argument as Kunchev. Seimiya men-
tions that the result is easily shown to hold also when C coincides with P
(even though the featured argument breaks down). Yiu extends the result
to include excircles: The line joining the points where an excircle touches the

segment BC and the line ` also passes through Q.

2131. [1996: 124] Proposed by Hoe Teck Wee, Singapore.

Find all positive integers n > 1 such that there exists a cyclic permuta-

tion of (1; 1; 2; 2; : : : ; n; n) satisfying:

(i) no two adjacent terms of the permutation (including the last and �rst

term) are equal; and

(ii) no block of n consecutive terms consists of n distinct integers.

Solution by the proposer.

It is clear that 2 does not have the desired property.

Suppose 3 has the speci�ed property. So there exists a permutation of

(1; 1; 2; 2; 3; 3) satisfying the two conditions. WLOG assume that the �rst

term is 1. From (ii) we know that the second term is not 1, say it is 2.

From (i) the third term must be 1. From (i) and (ii) the fourth term must

be 2. This leaves the two 3s as the last two terms, contradicting (i).

Suppose 4 has the speci�ed property. So there exists a permutation of

(1; 1; 2; 2; 3; 3; 4; 4) satisfying the two conditions. Arrange these eight (per-

muted) numbers in a circle in that order so that they are equally spaced. Then

the two conditions still hold. Now consider any four consecutive numbers

on the circle. If they consist of only two distinct integers, we may assume

by (i) that WLOG these four numbers are 1; 2; 1; 2 in that order, and that the

other four numbers are 3; 4; 3; 4. Then (ii) does not hold. If they consist of

three distinct integers, by (i) and (ii) we may assume WLOG that these four

numbers are (a) 1; 2; 3; 1 or (b) 1; 2; 1; 3 or (c) 1; 2; 3; 2, in these orders. By

reversing the order, (c) reduces to (b). Next consider (a). If the next number

is 2, then by (ii) we have 1; 2; 3; 1; 2; 3, and the two 4s are adjacent, contra-

dicting (i). If the next number is 3, reversing the order to obtain 3; 1; 3; 2; 1

reduces it to (b). Finally consider (b). By (i) and (ii) the next number must

be 2, followed by 3, so the two 4s are adjacent, contradicting (ii).

Next consider the following permutation for n > 4:

(4; 5; : : : ; n; 1; 2; 3; 2; 3; 4; 5; : : : ; n):

Clearly, (i) is satis�ed. (ii) follows from the fact that there does not exist a

set of four consecutive terms which is a permutation of (1;2; 3; 4).

In conclusion, the answer is: n > 4.
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Also solved by HANS ENGELHAUPT, Franz{Ludwig{Gymnasium, Bam-
berg, Germany; FLORIAN HERZIG, student, Perchtoldsdorf, Austria;
RICHARD I. HESS, Rancho Palos Verdes, California, USA; and DAVID E.
MANES, SUNY at Oneonta, Oneonta, NY, USA. There was one incomplete
solution.

2132. [1996: 124] Proposed by �Sefket Arslanagi �c, Berlin, Germany.

Let n be an even number and z a complex number.

Prove that the polynomial P (z) = (z + 1)n � zn � n is not divisible by

z2 + z + n.

I. Solution by Richard I. Hess, Rancho Palos Verdes, California, USA.

Let Q(z) = z2+ z+n. For n = 0 or 1, we have that P (z) = 0, which

is clearly divisible by Q(z). For any n > 1, suppose that P (z) is divisible

by Q(z). Then Q(n) divides P (n).

ButQ(n) = n(n+2)� 0 (mod n), whileP (n) = (n+1)n�n2�n �
1 (mod n). Thus P (z) is not divisible by Q(z).

II. Composite solution by F.J. Flanigan, San Jose State University, San
Jose, California, USA and Edward T.H. Wang, Wilfrid Laurier University, Wa-
terloo, Ontario.

Let D(z) = z2 + z+ n. If n = 0; 1, then P (z) = 0, which is divisible

by D(z). If n = 2, then P (z) = 2z � 1, which is clearly not divisible by

z2 + z + 2.

For n > 2, suppose thatD(z) dividesP (z). Then, sinceD(z) is monic,

P (z) = Q(z)D(z), where Q(z) is a polynomial of degree n� 3 with integer

coe�cients. Thus P (0) = Q(0)D(0), or 1 � n = nQ(0), which is clearly

impossible.

III. Solution and generalization by Heinz-J �urgen Sei�ert, Berlin, Ger-
many.

Let n � 2 be an even integer. We shall prove that if a, b, c, are complex

numbers such that a 6= 0, then the polynomial

P (z) = (z + b)n� zn � a

is not divisible by z2 + bz + c.

The proposer's result, which does not hold for n = 0, is obtained when

a = c = n and b = 1.

Let z1 and z2 denote the (not necessarily distinct) roots of z2+ bz+ c.

The z1+ z2 = �b, so that P (z1) = zn2 � zn1 � a, and P (z2) = zn1 � zn2 � a.

Since P (z1) + P (z2) = �2a 6= 0, our result follows.

The example (z+ 1)6� z6 = (z2+ z+1)(6z3+9z2+ 5z+1) shows

that the condition a 6= 0 cannot be dropped.
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Also solved by: CHARLES R. DIMINNIE, Angelo State University, San
Angelo, TX, USA; DAVID DOSTER, Choate Rosemary Hall, Wallingford, Con-
necticut, USA; FLORIAN HERZIG, student, Perchtoldsdorf, Austria;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; KEE-WAI
LAU, Hong Kong; DAVID E. MANES, SUNY at Oneonta, Oneonta, NY, USA;
NORVALD MIDTTUN (two solutions), Royal Norwegian Naval Academy,
Norway; ROBERT P. SEALY,MountAllisonUniversity, Sackville, New Bruns-
wick; DAVID R. STONE, Georgia Southern University, Statesboro, Georgia,
USA; and the proposer.

Besides the solvers listed in Solutions I and II above, only Janous ob-
served and showed that the assertion holds for all n � 2.

2134?. [1996: 124] Proposed by Waldemar Pompe, student, Univer-
sity of Warsaw, Poland.

Let fxng be an increasing sequence of positive integers such that the

sequence fxn+1 � xng is bounded. Prove or disprove that, for each inte-

ger m � 3, there exist positive integers k1 < k2 < : : : < km, such that

xk1 ; xk2 ; : : : ; xkm are in arithmetic progression.

Solution by David R. Stone, Georgia Southern University, Statesboro,
Georgia, USA, and Carl Pomerance, University of Georgia, Athens, Georgia,
USA.

An old and well-known result of van der Waerden [4] is that if the

natural numbers are partitioned into two subsets, then one of the subsets has

arbitrarily long arithmetic progressions. It is not very di�cult to show [1]

that van der Waerden's theorem has the following equivalent formulation:

for every number B and positive integer m, there is a number

W (m;B) such that if n � W (m;B) and 0 < a1 < a2 < : : : <

an are integers with each ai+1� ai � B, thenm of the ai's form

an arithmetic progression.

Thus, for the problem as stated, if we let B be the bound on the di�er-

ences xn+1 � xn, then for any given m � 3, there exists a W (m;B) with

the property stated above. Then, for any n � W (m;B), any �nite sub-

sequence of length n will have an arithmetic progression of length m as a

sub-subsequence. That is, the original sequence contains in�nitely many

arithmetic progressions of lengthm.

In 1975, Sz �emeredi [3] proved a conjecture of Erd }os and Tur �an which im-

proves on van der Waerden's Theorem, relaxing the condition that the se-

quence's di�erences have a uniform upper bound, requiring only that the

sequence have a positive upper density. Hence the problem posed here also

follows from the theorem of Sz �emeredi, who, we believe, received (for this

result) the highest cash prize ever awarded by P �al Erd }os | $1,000.
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Comment by the solvers.
Do we know how Pompe became interested in this problem?

References
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[2] Carl Pomerance, Collinear subsets of lattice point sequences| an analog

of Szemeredi's Theorem, J. Combin. Theory 28 (1980), 140{149.
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progression, Acta Arith. 27 (1975), 199{245.
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Arch. Wisk. 15 (1928), 212{216.

Also solved by THOMAS LEONG, Staten Island, NY, USA; and JOEL
SCHLOSBERG, student, Hunter College High School, New York NY, USA;
both using van der Waerden's theorem or its variation. Leong gave the ref-
erence: Ramsey Theory by R.L. Graham, B.L. Rothschild and J.H. Spencer.
Schlosberg remarked that van der Waerden's theorem was discussed in the
July 1990 issue of Scienti�c American.

The proposer showed that van der Waerden's theorem follows easily
from the statement of his problem. His intention (and hope) was to �nd a
proof independent of van der Waerden's theorem. This would establish a
new \proof" of the latter. In view of his comment and the solution above, it
should be obvious that the two statements are equivalent, and hence such a
proof is unlikely.

2135. [1996: 124] Proposed by Joaqu��n G �omez Rey, IES Luis Bu ~nuel,
Alcorc �on, Madrid, Spain.

Let n be a positive integer. Find the value of the sum

bn=2cX
k=1

(�1)k(2n� 2k)!

(k+ 1)!(n� k)!(n� 2k)!
:

Solution by Florian Herzig, student, Perchtoldsdorf, Austria. [Modi-
�ed slightly by the editor.]

Let Sn denote the given summation. Note that S1 is an \empty" sum,

which we shall de�ne to be zero. We prove that Sn = �
�

2n

n+ 2

�
.

Since

�
2

3

�
= 0, this is true for n = 1. Assume that n � 2. Follow-

ing standard convention, for k = 0, 1, 2, : : : , let
�
xk
�
(f(x)) denote the
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coe�cient of xk in the series expansion of the function f(x). Let

P (x) =
�
1� x2

�n+1
(1� x)�(n+1):

Then, by the binomial expansion, its generalization (by Newton), and the

well-known fact that

��n
k

�
= (�1)k

�
n+ k� 1

k

�
, we have:

�
x2k+2

� ��
1� x2

�n+1
�

=
h�
x2
�k+1

i ��
1� x2

�n+1
�

= (�1)k+1

�
n+ 1

k+ 1

�
;

for k = �1; 0; 1; 2; : : : , and

�
xn�2k

� �
(1� x)

�(n+1)
�

= (�1)n�2k
��n� 1

n� 2k

�

=

�
2n� 2k

n� 2k

�

for k � n=2. Hence�
xn+2

�
(P (x)) =

�
x2k+2 � xn�2k� (P (x))

=

bn=2cX
k=�1

(�1)k+1

�
n+ 1

k+ 1

��
2n� 2k

n� 2k

�
:

On the other hand, since P (x) = (1 + x)n+1, we have
�
xn+2

�
(P (x)) = 0.

Therefore
bn=2cX
k=�1

(�1)k+1

�
n+ 1

k + 1

��
2n� 2k

n� 2k

�
= 0:

Since

Sn = � 1

n+ 1

bn=2cX
k=1

(�1)k+1

�
n+ 1

k + 1

��
2n� 2k

n� 2k

�
;

we get

Sn = � 1

n+ 1

��
n+ 1

1

��
2n

n

�
�
�
n+ 1

0

��
2n+ 2

n+ 2

��

=
(2n+ 2)!

(n+ 1)(n+ 2)!n!
� (2n)!

n!n!

=
f2(2n+ 1)� (n+ 2)(n+ 1)g

(n+ 2)!n!
� (2n)!

=
�n(n� 1) (2n)!

(n+ 2)!n!
=

�(2n)!

(n+ 2)!(n� 2)!

= �
�

2n

n+ 2

�
:
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Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria; HEINZ-J�URGEN SEIFFERT, Berlin, Germany; and the proposer. The
correct answer, without a proof, was sent in by RICHARD I. HESS, Rancho
Palos Verdes, California, USA.

If, in the given summation, one lets k start from zero (this was, in fact,
the proposer's original idea), then it is easy to see that the answer becomes

1

n+ 2

�
2n+ 2

n+ 1

�
;

the (n+ 1){th Catalan number.

2136. [1996: 124] Proposed by G.P. Henderson, Campbellcroft, On-
tario.

Let a; b; c be the lengths of the sides of a triangle. Given the values of

p =
P
a and q =

P
ab, prove that r = abc can be estimated with an error

of at most r=26.

Solution by P. Penning, Delft, the Netherlands.
Scale the triangle down by a factor (a+ b+ c). The value of p then be-

comes 1, the value of q becomes Q =
q

(a+ b+ c)2
, and R =

r

(a+ b+ c)3
.

Introduce s =
a+ b

2
and v =

a� b

2
:

a = s+ v; b = s� v; c = 1� 2s;

Q = 2s� 3s2 � v2; R = (1� 2s)(s2� v2):

Since a, b, c, represent the sides of a triangle, we must require

0 < c < a+ b and � c < a� b < c:

[Ed: in other words, the triangle is not degenerate | a case which must be

discarded as inappropriate.]

This translates to

1

4
< s <

1

2
and jvj < 1

2
� s:

Lines of constant Q are ellipses in the s{v plane, with centre s = 1
3
, v = 0.

So we write:

s =
1

3
+ A cos(x); v =

p
3A sin(x);

with A =

p
(1� 3Q)

3
replacing Q.

Very symmetrical expressions are now obtained for a, b, c:

a =
1

3
�2A cos(120�+x); b =

1

3
�2A cos(120��x); c =

1

3
�2A cos(x):



186

R = abc� 1

27
� A2 � 2A3 cos(3x):

Now, R is minimal for x = 0:

Rmin =
1

27
� A2 � 2A3:

R is maximal for x = 60� provided that a � 1
2
, A � 1

12
:

Rmax =
1

27
� A2 + 2A3:

For 1
12
� A � 1

6
, we have cos(120�+ xmax) = � 1

12A
, since the maximum of

a is 1
2
. So

cos(3xmax) = � 4

(12A)3
+

3

(12A)
;

Rmax =
1

27
� A2 � 2A3

�
� 4

(12A)3
+

3

(12A)

�
=

1

24
� 3A2

2
:

We must determine the reciprocal of the relative spread in R:

F =
Rmax +Rmin

Rmax �Rmin

:

For A � 1
12
, we have

F =

1
27
� A2

2A3
:

The minimum in F is reached at A = 1
12
, so that Fmin = 26.

For 1

12
� A � 1

6
, both Rmax and Rmin are zero for A = 1

6
. So

Rmin =

�
1

6
� A

��
2

9
+

4A

3
+ 2A2

�
;

Rmax =

�
1

6
� A

��
1 + 6A

4

�
:

The minimum in F is also at A = 1

6
and yields the same value for Fmin = 26.

Also solved by NIELS BEJLEGAARD, Stavanger, Norway; and the pro-
poser. One incorrect submission was received in that the sender assumed
that a degenerate triangle disproved the proposition.
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2137. [1996: 124, 317; 1997: 48] Proposed by Aram A. Yagubyants,
Rostov na Donu, Russia.

Three circles of (equal) radius t pass through a point T , and are each

inside triangle ABC and tangent to two of its sides. Prove that:

(i) t =
rR

R+ r
, (ii) T lies on the line segment joining the centres

of the circumcircle and the incircle of 4ABC.

Solution by Gottfried Perz, Pestalozzigymnasium, Graz, Austria.

A B

C

X Y

Z

I

T

r r

r

r

r

r

rr

We denote the centres of the three

circles by X, Y and Z. Since the

three circles pass through a common

point T and have equal radius t, it

follows that X, Y and Z lie on the

circle with centre T and radius t.

Since each of the circles is tangent to

two sides of 4ABC, it follows that

X, Y andZ lie on the internal bisec-

tors of \A, \B and\C. SinceAB is

a common tangent of two intersect-

ing circles with radius t, it follows

that ABkXY , and analogously,

we have Y ZkBC and ZXkAC.

This implies that the lines AX, BY and CZ are bisectors of the angles of

4XY Z as well, and so 4ABC and4XY Z have the same incentre I.

Thus we conclude that triangles4ABC and4XY Z are homothetic with I

as centre of similitude. This implies that:

(i) the ratio of the radii of the circumcircles of4ABC and4XY Z equals

the ratio of the radii of the incircles of the triangles; that is

R : t = r : (r � t) Rr � Rt = rt

t(R+ r) = Rr t =
Rr

R+ r
;

(ii) as corresponding points in the homothety, T (the circumcentre of

4XY Z) and the circumcentre of 4ABC lie collinear with I, as de-

sired.

Also solved by �SEFKET ARSLANAGI �C, University of Sarajevo, Sara-
jevo, Bosnia and Herzegovina; NIELS BEJLEGAARD, Stavanger, Norway;
FRANCISCO BELLOT ROSADO, I.B. Emilio Ferrari, Valladolid, Spain;
CHRISTOPHER J. BRADLEY, CliftonCollege, Bristol,UK; HAN PINGDAVIN
CHOR, student, Cambridge, MA, USA; HANS ENGELHAUPT, Franz{Ludwig{
Gymnasium, Bamberg, Germany; FLORIAN HERZIG, student, Perchtolds-
dorf, Austria; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Aus-
tria; V �ACLAV KONE �CN �Y, Ferris State University, Big Rapids, Michigan,USA;
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P. PENNING, Delft, the Netherlands; TOSHIO SEIMIYA, Kawasaki, Japan;
D.J. SMEENK, Zaltbommel, the Netherlands; PAUL YIU, Florida Atlantic
University, Boca Raton, Florida, USA; and the proposer.

Janous has seen both parts of the problem before; although unable to
provide a reference to part (i), he reconstructed the argument that he had
seen, which was much like our featured solution. He, among several others,
noted that (ii) is essentially problem 5 of the 1981 IMO [1981: 223], solution
on pp. 35{36 ofM.S. Klamkin, International Mathematical Olympiads 1979{

1985, MAA, 1986. See also the \generalization" 694 [1982: 314] and the
related problem 1808 [1993: 299].

2138. [1996: 169] Proposed by Christopher J. Bradley, Clifton Col-
lege, Bristol, UK.

ABC is an acute angle triangle with circumcentre O. AO meets the

circle BOC again at A0, BO meets the circle COA again at B0, and CO

meets the circle AOB again at C0.
Prove that [A0B0C0] � 4[ABC], where [XY Z] denotes the area of

triangle XY Z.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
There is an even sharper inequality:

[A0B0C0] � 3 3

vuut Y
cyclic

cos2(B � C)

sinA sin 2A
[ABC]:

For this, we �rst represent [A0B0C0] as a function of A, B, C and R

(the circumradius).

A B

A0

C

O

We have: \AOB = 2C, so that

\BOA0 = 180� � 2C and \BA0O =

\BCO = 90� �A.

[Both angles subtend the line BO on

circle BOC!] Thus,

\A0BO

= 180� � (180� � 2C)� (90� � A)

= A+ 2C � 90�

= 180� � B +C � 90�

= 90� � (B � C):

Hence, using the law of sines in4OBA0, we get

jOA0j
sin(90� � (B � C))

=
R

sin(90� �A)
;

that is, jOA0j = R cos(B � C)

cosA
.



189

Similarly, jOB0j = R cos(C � A)

cosB
and jOC0j = R cos(A�B)

cosC
.

Now, since \A0OB0 = \AOB = 2C, we get, via the trigonometric area

formula of triangles, that

[A0B0O] = 1

2
jOA0j � jOB0j � sin(\A0OB0)

=
R2

2

cos(B � C) cos(C � A)

cosA cosB
sin 2C;

and similarly for [B0C0O] and [C0A0O]. Thus

[A0B0C0] = [A0B0O] + [B0C0O] + [C0A0O]

=

0
@ X
cyclic

cos(C � A) cos(C � B)

cosA cosB
sin2C

1
A� R2

2
: (1)

Next, we recall the formula

[ABC] = 2R2
Y
cyclic

sinA (2)

From (1), we get, via the arithmetic-geometric-mean inequality:

X
cyclic

cos(C � A) cos(C �B)

cosA cosB
sin2C

� 3

2
4 Y
cyclic

�
cos2(B �C)

cos2A
� sin 2A

�35
1
3

= 6

2
4 Y
cyclic

cos2(B � C)

cosA
� sinA

3
5
1
3

= 6

2
4 Y
cyclic

cos2(B � C)

sin2A cosA

3
5
1
3

�
Y
cyclic

sinA

= 12

2
4 Y
cyclic

cos2(B � C)

sinA sin 2A

3
5
1
3

�
Y
cyclic

sinA;

so that, using (1) and (2),

[A0B0C0] � 3

2
4 Y
cyclic

cos2(B � C)

sinA sin2A

3
5
1
3

� [ABC]
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as claimed.

Finally, we recall the angle inequality:

Y
cyclic

cos2(B �C) � 512

27

Y
cyclic

�
sin2A cosA

� 24= 64

27

Y
cyclic

(sinA sin2A)

3
5

which is valid for all triangles (but interesting only for acute triangles) with

equality if and only if A = B = C = 60�, or the degenerate cases with two

of A, B, C being right angles. This immediately yields

2
4 Y
cyclic

cos2(B � C)

sinA sin2A

3
5
1
3

� 3

r
64

27
=

4

3
;

and the original inequality follows.

Also solved by D.J. SMEENK, Zaltbommel, the Netherlands.

2139. [1996: 169, 219] Proposed by Waldemar Pompe, student, Uni-
versity of Warsaw, Poland.

Point P lies inside triangle ABC. Let D, E, F be the orthogonal pro-

jections from P onto the lines BC, CA, AB, respectively. Let O0 and R0

denote the circumcentre and circumradius of the triangleDEF , respectively.

Prove that

[ABC] � 3
p
3R0

q
R02 � (O0P )2;

where [XY Z] denotes the area of triangle XY Z.

Solution by the proposer.

Let C denote the circumcircle of DEF . Let P 0 be the symmetric point

to P with respect to O0. Let E be the ellipse with foci P and P 0 tangent
(internally) to C. The diameter of the ellipse E is 2R0, and its area is equal

to �R0
q
R02 � (O0P )2. Since the locus of the orthogonal projections from

P onto tangents to the ellipse E is the circle C, the sides of ABC must be

tangent to E. Thus E is inscribed in the triangle ABC. Let L be an a�ne

mapping which takes E to some circle of radiusR, and let it take the triangle

ABC to the triangleA0B0C0. Since L preserves the ratio of areas, we obtain

[ABC]

�R0
q
R02 � (O0P )2

=
[ABC]

area of E =
[A0B0C0]

�R2
� 3

p
3R2

�R2
; (1)

since among all triangles circumscribed about the given circle, the one of

smallest area is the equilateral triangle. Thus (1) is equivalent to the desired

inequality, so we are done.
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Remarks: The same proof works also for an n-gon which has an inte-

rior point whose projections onto the sides of the n-gon are concyclic. The

analogous inequality will be

[A1 : : : An] � n tan

�
�

n

�
R0
q
R02 � (O0P )2 :

Note that as a special case, when the n-gon has the incircle and P = O0 we
obtain the well-known result that among all n-gons circumscribed about a
given circle, the one of smallest area is the regular one, though it is used in

the proof.

2140. [1996: 169] Proposed by K.R.S. Sastry, Dodballapur, India.
Determine the quartic f(x) = x4+ ax3+ bx2+ cx� c if it shares two

distinct integral zeros with its derivative f 0(x) and abc 6= 0.

Solution by Florian Herzig, student, Perchtoldsdorf, Austria.

Let the zeros of f(x) be the integers p and q; without loss of generality

p > q. It is a well-known theorem that if a polynomial Q(x) divides the

polynomial P (x) as well as the derivative P 0(x), then (Q(x))
2
divides P (x).

Applying the theorem for this problem, we obtain

f(x) = (x� p)2(x� q)2 = x4 + axx + bx2 + cx� c:

Comparing coe�cients of x and the constant term yields

0 = c+ (�c) = �2(p+ q)pq+ p2q2:

As pq = 0 implies abc = 0, we may divide by pq

pq � 2p� 2q = 0

(p� 2)(q� 2) = 4 = 4 � 1 = (�1)(�4)

Hence (p; q) = (6;3) _ (1;�2) (since p 6= q) and the two possible polyno-

mials are

f1(x) = (x� 6)2(x� 3)2 = x4 � 18x3 + 117x2 � 324x+ 324;

f2(x) = (x+ 2)2(x� 1)2 = x4 + 2x3 � 3x24x+ 4:

Also solved by CHRISTOPHER J. BRADLEY, Clifton College, Bristol,
UK; THEODORE CHRONIS, student, Aristotle University of Thessaloniki,
Greece; CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX,
USA; DAVIDDOSTER, Choate Rosemary Hall, Wallingford, Connecticut,USA;
HANS ENGELHAUPT, Franz{Ludwig{Gymnasium, Bamberg, Germany;
F.J. FLANIGAN, San Jose State University, San Jose, California, USA; SHAWN
GODIN, St. Joseph Scollard Hall, North Bay, Ontario; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; V �ACLAV KONE �CN �Y, Ferris State
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University, Big Rapids, Michigan, USA; BEATRIZ MARGOLIS, Paris, France;
L. RICE, Woburn Collegiate, Scarborough, Ontario; HARRY SEDINGER,
St. Bonaventure University, St. Bonaventure, NY, USA; HEINZ-J�URGEN
SEIFFERT, Berlin, Germany; SKIDMORECOLLEGE PROBLEMGROUP, Sara-
toga Springs, New York, USA; DIGBY SMITH,MountRoyal College, Calgary,
Alberta; and the proposer. There were eight incorrect or incomplete solu-
tions.

Do you know the equation of this graph?

Contributed by Juan-Bosco Romero M�arquez, Universidad de Valladolid, Valladolid, Spain.

-
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