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Editor-at-Large Bill Sands University of Calgary



IN THIS ISSUE / DANS CE NUMÉRO
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MathemAttic /363

MATHEMATTIC
No. 68

The problems in this section are intended for students at the secondary school level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by December 15, 2025.

MA336. Proposed by Michael Friday.

Suppose that in triangle ABC we have ∠A − ∠B = 90◦. Prove that the orthic
triangle of ABC, which is the triangle formed by the feet of the altitudes of ABC,
is isosceles.

MA337. Proposed by Alaric Pow.

Prove or disprove that there cannot be a right-angled triangle whose sides are all
of prime length.

MA338.

A hexle is constructed from a circle by reversing three non-intersecting arcs, each
of which is 1/6 of the circumference. If the radius of the circle is 1, find the exact
area of the hexle.

MA339.

If p and q are positive integers such that

p

q
= 1 +

1

2
− 2

3
+

1

4
+

1

5
− 2

6
+

1

7
+

1

8
− 2

9
+ · · ·+ 1

478
+

1

479
− 2

480
,

show that p is divisible by 641.

MA340.

Suppose that m and n are positive integers. For what values of m and n can
m4 + 4n4 be a prime number?
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Les problèmes dans cette section sont appropriés aux étudiants de l’école secondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 décembre 2025.

MA336. Soumis par Michael Friday.

Supposons que dans le triangle ABC, nous ayons ∠A−∠B = 90◦. Montrez que le
triangle orthique, c’est-à-dire le triangle ayant pour sommets les pieds des hauteurs
de ABC, est isocle.

MA337. Soumis par Alaric Pow.

Prouvez ou réfutez l’affirmation voulant qu’il ne peut exister de triangle rectangle
dont tous les côtés sont des nombres premiers.

MA338.

Un hexle est construit à partir d’un cercle en inversant trois arcs qui ne se rencon-
trent pas, chacun représentant 1/6 de la circonférence. Si le rayon du cercle est
égal à 1, calculez l’aire exacte de l’hexle.

MA339.

Si p et q sont des entiers positifs tels que

p

q
= 1 +

1

2
− 2

3
+

1

4
+

1

5
− 2

6
+

1

7
+

1

8
− 2

9
+ · · ·+ 1

478
+

1

479
− 2

480
,

montrer que p est divisible par 641.

MA340.

Supposons que m et n soient des nombres entiers positifs. Pour quelles valeurs de
m et n le nombre m4 + 4n4 peut-il être premier ?
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2025: 51(3), p. 105–107.

MA311. Proposed by Shafik Khalifa.

Let ABCD be a square with equilateral triangles BCE and DFG positioned inside
it as shown. Prove that the ratio of the areas of EFH and HBG is 1:2.

We received 6 solutions, of which 5 were correct and complete. We present the
solution by Miguel Amengual Covas.

In triangles EFH and HBG, we have

∠EFH = ∠HBG, ∠FHE = ∠GHB,

hence the two triangles are similar. Therefore,

area 4EFH
area 4HBG

=

Å
EF

BG

ã2
. (1)

Since ∠EFG = ∠EBG, the quadrilateral EFBG is cyclic. From this, we conclude
that

∠FGE = ∠FBE = 90◦ − 60◦ = 30◦.

Moreover, since ∠FBG + ∠GEF = 180◦, we know ∠GEF = 90◦. Then in right
triangle GEF ,

EF =
1

2
FG. (2)

Right-angled triangles DAF and CDG are congruent, with AF = GC. Thus,

FB = AB −AF = BC −GC = BG,

Copyright © Canadian Mathematical Society, 2025
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making 4FBG isosceles right-angled, so that

BG =
FG√

2
. (3)

By (2) and (3),
EF

BG
=

1√
2
.

Substituting (1) yields
area 4EHF
area 4HBG

=
1

2
,

as desired.

MA312. Proposed by Neculai Stanciu.

Determine all pairs of integers (x, y) that satisfy 1 + x+ x2 + x3 + x4 = y4.

We received 10 submissions, of which 3 were correct and complete. The majority
of solvers either missed a solution or had an incorrect justification. We present
the solution by R. Achudhan and Srikanth Pai (a student-teacher collaboration).

The only solutions are (0, 1), (0,−1), (−1, 1), (−1,−1).We actually prove a stronger
claim, specifically that the equation

Y 2 = 1 + x+ x2 + x3 + x4

has integer solutions if and only if x = 0,−1, 3.

We prove this by showing that the left-hand side of the above equation is strictly
sandwiched between two consecutive perfect squares for |x| > 1 unless x = 3.
Specifically, we claim that for |x| > 1, x 6= 3:(

x2 +
⌊x

2

⌋)2
< 1 + x+ x2 + x3 + x4 <

(
x2 +

⌊x
2

⌋
+ 1
)2
.

To prove this, we consider two separate cases depending on the parity of x.

Case 1: x is even. We begin by estimating the right-hand side of the inequality.
Observe that:

x4 +
x2

4
+ 1 + x+ 2x2 + x3 < 1 + x+ x2 + x3 + x4.

This simplifies to:

0 <
5x2

4

which is clearly true for all x 6= 0.

For the other side of the inequality, we deduce that:

x4 +
x2

4
+ x3 > x4 + x3 + x2 + x+ 1,

Crux Mathematicorum, Vol. 51(8), October 2025
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which gives a quadratic expression

3x2

4
+ x+ 1 > 0,

which is true for all real x since the discriminant of the quadratic is −2.

Case 2: x is odd. We now turn to the case when x is odd and |x| > 1. We start
with:

x4 + x3 − x2 +
(x− 1)2

4
< 1 + x+ x2 + x3 + x4.

Rewriting and simplifying:

2x2 − (x− 1)2

4
+ x+ 1 > 0.

Expanding and collecting terms yields

8x2 − (x2 − 2x+ 1) + 4x+ 4 > 0 ⇐⇒ 7x2 + 6x+ 3 > 0,

which is true since the discriminant is negative again.

Now we prove the right hand side of the inequality:Å
x2 +

(x− 1)

2
+ 1

ã2
> 1 + x+ x2 + x3 + x4

x4 +
(x− 1)2

4
+ 1 + x3 − x2 + 2x2 + (x− 1) > 1 + x+ x2 + x3 + x4

This reduces to showing |x − 1| > 2 which is true unless x = 3. In this case
1 + x+ x2 + x3 + x4 = 112 which is the only solution in this case.

Thus, in both even and odd cases, the original expression lies strictly between two
consecutive squares, completing the proof.

MA313. The integers from 1 to 9 can be arranged into a 3× 3 array so that
the sum of the numbers in every row, column and diagonal is a multiple of 9.

A B C
D E F
G H I

a) Prove that the number in the center of the array must be a multiple of 3.

b) Give an example of such an array with 6 in the center.

Originally from the 1998–1999 USA Mathematical Talent Search, Round 3, Prob-
lem 3/3/10.

We received 9 solutions of which 4 were correct and complete. We present the
solution by Srikanth Pai.

Copyright © Canadian Mathematical Society, 2025
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a) We know that the sum of the numbers in every row, column, and diagonal is
a multiple of 9. Therefore, the following sums, and subsequently the sum of these
sums, are all multiples of 9:

A+ E + I, B + E +H, C + E +G, F + E +D.

Moreover, since each integer from 1 to 9 appears exactly once in the square, then
we can calculate the following sum:

A+B + C +D + E + F +G+H + I =
9∑
i=1

i = 45.

It follows that for some k ∈ Z+, we have

S = (A+ E + I) + (B + E +H) + (C + E +G) + (F + E +D)

= 3E +A+B + C +D + E + F +G+H + I

= 3E + 45

= 9k.

We can easily isolate E to get

E =
9k − 45

3
= 3k − 15 = 3(k − 5).

We conclude that E is a multiple of 3.

b) The following array satisfies the necessary conditions with E = 6.1 5 3
8 6 4
9 7 2



MA314. Determine the smallest five-digit positive integer N such that 2N
is also a five-digit integer and all ten digits from 0 to 9 are found in N and 2N .

Originally from the 2000–2001 USA Mathematical Talent Search, Round 1, Prob-
lem 1/1/12.

We received 4 submissions of which 2 were correct and complete. We present the
solution by Sicheng Du.

For N = 13485 we have 2N = 26970, so it satisfies the conditions. Assume that
there exists N ≤ 13484 also satisfying the condition.

It can be easily verified that N cannot begin with 10. Since each of the 10 digits
of N and 2N is unique, N cannot begin with 11. If N begins with 12, then 2N
begins with 2, which is also impossible.

Crux Mathematicorum, Vol. 51(8), October 2025
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So N must begin with 13, in which case 2N must begin with 2. Let

N = 1 3 c d e
× 2

2N = 2 v w x y

Since digits 1, 2, 3 have been used, then c ≥ 4, so c = 4. Hence, v = 6 and w = 8
or 9. Looking at what remains, we get e, y ∈ {0, 5, 7, 8, 9}. Since 2e = y or 10 + y,
then e = 5, y = 0 or e = 9, y = 8. The latter is impossible because of the value of
w, so e = 5 and y = 0. Now,

N = 1 3 4 d 5
× 2

2N = 2 6 w x 0

where d ∈ {7, 8, 9}. It is easy to check that only d = 8 works, so N = 13485, a
contradiction. Therefore, N = 13485 is the desired smallest number.

Editor’s Comment. So N = 13485 is the smallest possible number. How many
solutions greater than N = 13485 are there?

MA315. Proposed by Yagub N. Aliyev.

A line passing through a point O and points Q1 and Q2 on a parallel line are drawn.
A line intersects these lines at U and T , and the segments OQ1 and OQ2 at points
P1 and P2, respectively, so that |P1P2| = |Q1Q2|. Prove that |OU |+|TQ2| = |UP1|
and |OU |+ |TQ1| = |UP2|.

We received 2 solutions for the problem. We present the solution by the proposer.

Since the lines OU and TQ1 are parallel, 4OUP1 ∼ Q1TP1, 4OUP2 ∼ Q2TP2.
Then

TQ1

UO
=
TP1

UP1
and

TQ2

UO
=
TP2

UP2
.

So,
TQ2 +Q2Q1

UO
=
TP2 + P2P1

UP1
and

TQ2

UO
=

TP2

UP1 + P1P2
.

By cross multiplying, we obtain

TQ2 · UP1 +Q2Q1 · UP1 = TP2 · UO + P2P1 · UO,

TQ2 · UP1 + TQ2 · P1P2 = TP2 · UO.

Copyright © Canadian Mathematical Society, 2025



370/ MathemAttic

Since P1P2 = Q1Q2, by subtracting, we obtain

(UP1 − TQ2) · P1P2 = P2P1 · UO.

Therefore,
UP1 − TQ2 = UO.

Consequently,
UP1 = UO + TQ2.

By adding the equality P1P2 = Q2Q1 to this equality we obtain also

UP1 + P1P2 = UO + TQ2 +Q2Q1,

or
UP2 = UO + TQ1.

Crux Mathematicorum, Vol. 51(8), October 2025
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Competition Highlights
The Canadian Mathematical Olympiad Qualifying

Repêchage
Alex Zhuoqun Song

The Repêchage for the Canadian Math Olympiad was held in January 2025. The
Repêchage is intended for students whose Canadian Open Mathematics Challenge
(COMC) scores were just a bit below the cutoff score, for direct invitations to the
Canadian Mathematical Olympiad (CMO). Students had a week to solve eight
problems, with a blend of answer-based problems and proof-based problems. Be-
cause of the long time limit, students were required to write formal solutions for
all eight problems, and were graded both on the quality and correctness of their
writeup as well as their conclusions.

In 2025, we had eight problems, totalling 100 points. The median score was 55,
and 21 students out of 83 participants qualified for the CMO, with 19 additional
students qualifying for the Canadian Junior Mathematical Olympiad (CJMO).

Below, we will present a couple medium-level problems: a combinatorics problem
involving expected value and a functional equation.

Problem: Initially, there are 2024 green balls and 1 red ball in a box. Every
minute, Kate chooses a random ball from the box. If it is green, she paints it blue
and puts it back into the box. If it is blue, she paints it green and puts it back
into the box. Finally, if it is red, then she stops the process. What is the expected
number of green balls at the end of her process?

Solution: Label the green balls as G1, . . . , G2024. Define the indicator random
variable In to be 1 if the ball is green when the red ball is drawn, and 0 if the ball
is blue when the red ball is drawn. The expected number of green balls at the end
of the process is E(I1 + I2 + · · · + I2024). From the linearity of expectation and
the symmetry of all the green balls, we see that this expected value is equal to

2024E(I1) = 2024 · P (ball 1 is green).

In order to compute this probability, we consider the process of drawing balls. At
each step, either ball G1 is drawn; the red ball is drawn; or G2, . . . , G2024 is drawn.
Note that in the last case, this does not affect the status of the ball G1 at all, so
we may discard this possibility. As such, we see that at each step, either G1 is
drawn or the red ball is drawn and they happen with equal probability. So we see
that for the ball to be green in the end, the ball must be chosen exactly an even
number of times before the red ball is chosen. So the probability is

P (ball 1 is green) =
1

2
+

1

23
+

1

25
+ · · · = 2

3

As such, we see that the expected number of balls that are green at the end is
4048
3 .

Copyright © Canadian Mathematical Society, 2025
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Problem: Find all functions f : R → R such that xy = f(x)f(y) − f(x + y) for
all real numbers x and y.

Solution: We claim that the solutions are f(x) = 1± x. It is easy to verify that
these satisfy the functional equation.

To show that these are the only solutions, we first plug in y = 0 to the original
equation to get f(0)f(x) = f(x) for all x. It is also evident that f(x) cannot be 0
for all x, so we get that f(0) = 1.

Next, plug in x = 1 and y = −1 to get that f(1)f(−1) = 0. We now split into two
cases based on which of f(1) and f(−1) is zero.

Case 1: f(1) = 0. In this case, plug in y = 1 to get f(x + 1) = −x, and by a
change of variables, we get f(x) = 1− x for all x.

Case 2: f(−1) = 0. In this case, plug in y = −1 to get f(x− 1) = x. Again, by
a change of variables, we get f(x) = 1 + x for all x.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

You can learn more about the various competitions run or supported by the CMS
at https://cms.math.ca/competitions/. Competitions serve both as an enrich-
ment activity as well as provide ways to advance and represent Team Canada at
the International Mathematical Olympiad. Visit the CMS Competition website
to learn more.

Crux Mathematicorum, Vol. 51(8), October 2025
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Trisecting an angle
Ed Barbeau

Section 0

After students learn about bisecting an angle using straightedge and compasses,
the question of a similar construction for trisecting an angle may come up, and
some students may attempt to find a method. Once I was contacted by a middle
school teacher, one of whose students thought he had succeeded.

The proposed construction was pleasantly simple. Let POQ be the (acute) angle
to be trisected. From any point A on OP , drop a perpendicular to meet OQ at
B. Construct an equilateral triangle ABC with side AB with O and the vertex C
on opposite sides of AB. Then it is claimed that ∠COB is equal to one third of
∠POQ. If you check it out with a protractor the method is not bad at all, with
numerical evidence suggesting that the error is within one or two degrees. In fact,
it works for one acute angle; it is not hard to identify and check this angle.

However, there is a pedagogical difficulty here. One could don the mantle of
authority and simply tell the student that it was rigorously proved long ago that
no such method exists. It is more satisfactory to find an explanation that involves
mathematics accessible to the student. I pose two problems for the reader and
suggest solutions for them that I think can be improved upon.

(1) Find an argument that the proposed trisection construction is faulty
that involves facts of Euclidean geometry that the student might be
expected to know. The more straightforward the argument the better.

(2) Using standard high school mathematics, provide an analysis that
identifies the situations for which the method delivers a trisection.

Section 1

We are asked to refute a construction that purports to produce a trisection for every
acute angle. We employ a proof by contradiction: assume that the construction
works for every angle and derive from this a false statement. All we have to do is
to find at least one angle for which it does not work. The following argument will
begin with the assumption that it works for both angles 30◦ and 60◦ and derive
inconsistent conclusions. (In Section 3, you will see how the assumption that it
works for POQ = 60◦ leads to a contradiction.)

In the diagram below, ∠POQ = 60◦ and ∠DOB = 30◦. We will suppose that
AB = 3, from which we find that BD = 1, AD = 2 and OB =

√
3. Triangles

Copyright © Canadian Mathematical Society, 2025
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ABC and DBE are equilateral, and ∠CBQ = ∠EBQ = 30◦. Since AC‖DE,
CE = AD = 2.

Assuming the method is valid, ∠EOB = 10◦, so

∠OEB = ∠EBQ− ∠EOB = 20◦.

Also, by hypothesis, ∠COQ = 20◦, so ∠COE = 10◦. Since

∠OCE = ∠OEB − ∠COE = 10◦,

triangle COE is isosceles with OE = CE = 2.

Consider triangle OBE, On the one hand, ∠OBE is obtuse. On the other,

OB2 +BE2 = 3 + 1 = 4 = OE2,

which can occur only if ∠OBE = 90◦. Since these two statements are incompati-
ble, the method fails for at least one of 30◦ and 60◦.

O

A

B

C

D

E

P

Q

Section 2

Now look at the general situation of a proper acute angle. In the diagram below,
assume that AB = 2 and OB = t with t > 0. From the diagram, we see that

tan∠COQ =
1

t+
√

3

and

tan∠POQ =
2

t
.

Crux Mathematicorum, Vol. 51(8), October 2025
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O

A

B

C

R

P

Q

2

1

√
3t

It can be verified that

tan 3∠COQ =
3t2 + 6t

√
3 + 8

t3 + 3t2
√

3 + 6t
.

Therefore

(t3 + 3t2
√

3 + 6t) · [tan 3∠COQ− tan∠POQ]

= (3t2 + 6t
√

3 + 8)− 2(t2 + 3t
√

3 + 6)

= t2 − 4

= (t− 2)(t+ 2).

This vanishes if and only if t = 2 and ∠POQ = 45◦. (There is a degenerate
situation when ∠POQ = 90◦. Here Q = B and ∠COQ = 30◦.)

Section 3

A different assignment of lengths suggested by J. Chris Fisher gives a more trans-
parent relationship between the tangents of the angles POQ and COQ. Let
AB =

√
3 andOB = t; then CR =

√
3/2, BR = 3/2 and tan∠COQ =

√
3/(2t+3).

Then

tan 3∠COQ =
3
√

3(t2 + 3t+ 2)

t(2t2 + 9t+ 9)
= tan∠POQ

Å
3(t2 + 3t+ 2)

2t2 + 9t+ 9

ã
.

When ∠POQ = 60◦, then t = 1 and

tan 3∠COQ = (9/10)
√

3 = (9/10) tan 60◦.

In this case, the trisection method produces an angle of about 19.1◦.

Let
f(t) = [3(t2 + 3t+ 2)]/[2t2 + 9t+ 9].

Copyright © Canadian Mathematical Society, 2025
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Suppose that ∠POQ = θ. If t is the value of OB that corresponds to θ, then 3/t is
the value of OB that corresponds to the complement, 90◦−θ. Then f(3/t) ·f(t) =
1. The function f(t) increases from 2/3 when t = 0 (and θ = 90◦) to 3/2 when
t =∞ (and θ = 0). However, the effect of the values of f(t) in the accuracy of the
trisection when θ is further from 45◦ and f(t) is further from 1 is offset by the fact
that when θ is close to 90◦ a large change in its tangent corresponds to a small
change in the angle, and when θ is small, the error from a true trisection will also
be small. For what angle is the deviation from a proper trisection maximum?

Crux Mathematicorum, Vol. 51(8), October 2025
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OLYMPIAD CORNER
No. 436

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by December 15, 2025.

OC746. Two different integers u and v are written on a board. We perform
a sequence of steps. At each step, we do one of the following two operations:

(i) If a and b are different integers on the board, then we can write a+ b on the
board, if it is not already there.

(ii) If a, b and c are three different integers on the board, and if an integer x
satisfies ax2 + bx + c = 0, then we can write x on the board, if it is not
already there.

Determine all pairs of starting numbers (u, v) from which any integer can eventu-
ally be written on the board after a finite sequence of steps.

OC747. Find all positive integers d for which there exists a degree d polyno-
mial P with real coefficients such that there are at most d different values among
P (0), P (1), P (2), . . . , P (d2 − d).

OC748. The complex n×n matrices A, B satisfy the relation A2B+BA2 =
2ABA. Check that X = AB − BA commutes with A, and either using this or in
any other way prove that there exists k ∈ {1, . . . n} such that Xk = 0.

OC749. If H is a set containing a given number n > 1 of (arbitrary) positive
integers, how many elements can be in {xy + z|x, y, z ∈ H} at most and at least?

OC750. Find

lim
n→∞

2n∑
k=n

Ç
k − 1

n− 1

å
2−k.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 décembre 2025.

OC746. Deux entiers différents u et v sont écrits sur un tableau. On effectue
une séquence d’étapes. À chaque étape, on réalise l’une des deux opérations suiv-
antes :

(i) Si a et b sont des entiers différents sur le tableau, alors on peut écrire a+ b
sur le tableau, s’il n’y est pas déjà.

(ii) Si a, b et c sont trois entiers différents sur le tableau, et si un entier x satisfait
ax2 + bx+ c = 0, alors on peut écrire x sur le tableau, s’il n’y est pas déjà.

Déterminez toutes les paires de nombres de départ (u, v) à partir desquelles un
nombre entier quelconque peut éventuellement être écrit sur le tableau après une
séquence finie d’étapes.

OC747. Trouvez tous les entiers positifs d pour lesquels il existe un polynôme
P de degré d à coefficients réels tel qu’il y ait au plus d valeurs différentes parmi
P (0), P (1), P (2), . . . , P (d2 − d).

OC748. Les matrices n × n complexes A et B satisfont la relation A2B +
BA2 = 2ABA. Vérifiez que X = AB−BA commute avec A, et soit en utilisant ce
fait, soit d’une autre manière, montrez qu’il existe k ∈ {1, . . . n} tel que Xk = 0.

OC749. Si H est un ensemble contenant un nombre donné n > 1 d’entiers
positifs (arbitraires), au plus et au moins combien d’éléments peuvent se trouver
dans {xy + z|x, y, z ∈ H} ?

OC750. Trouvez

lim
n→∞

2n∑
k=n

Ç
k − 1

n− 1

å
2−k.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2025: 51(3), p. 121–122.

OC721. Petya and Vasya know only natural numbers that do not exceed
109 − 4000. Petya considers good numbers that can be represented in the form
abc + ab + bc + ca, where a, b, c are natural numbers not less than 100. Vasya
considers good numbers that can be represented in the form xyz−x−y−z, where
x, y, z are natural numbers greater than 100. For which of them are there more
good numbers?

Originally from the All Russian Mathematical Olympiad 2024 - Final Round,
Grade 9, Problem 1.

We received 5 correct solutions. We present the solution by Theo Koupelis.

Using the identity

abc+ ab+ bc+ ca = (a+ 1)(b+ 1)(c+ 1)− (a+ 1)− (b+ 1)− (c+ 1) + 2,

we see that if a number N = xyz − x− y − z is considered good by Vasya, where
(x, y, z) = (a+ 1, b+ 1, c+ 1), then the number N + 2 is considered good by Petya.
Also, for a, b, c ≥ 100 we get x, y, z ≥ 101. The number Nmax = 109 − 4000 is
achieved by Vasya for (x, y, z) = (103 − 1, 103, 103 + 1) or permutations, but the
number Nmax + 2 is outside the allowed range, and thus not achievable by Petya.
Thus, there are more good numbers for Vasya.

OC722. Let p and q be distinct prime numbers. Given an infinite decreasing
arithmetic sequence in which each of the numbers p23, p24, q23 and q24 occurs,
prove that the numbers p and q are sure to occur in this sequence.

Originally from the All Russian Mathematical Olympiad 2024 - Final Round,
Grade 10, Problem 1.

We received 9 correct solutions. We present the solution by Oliver Geupel.

Let A be the given sequence and let d denote its common difference. Note that d
divides the number

p24 − p23 = (p− 1)p23.

But d is not a multiple of p, because d divides the number p23 − q23, which is not
divisible by p. Hence, d is a divisor of p− 1. Thus, d divides the number

(p− 1)
22∑
k=1

pk = p23 − p.
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It follows that p occurs in A. Similarly, d is a divisor of q − 1 and therefore also
divides q23 − q. Consequently, q occurs in A. This completes the proof.

OC723. Oleg has a set of 2024 different checkered rectangles of sizes 1 × 1,
1× 2, 1× 3, . . ., 1× 2024 (one rectangle of each size). Can he, by choosing some
of them, make up a checkered square with an area greater than 1?

Originally from the All Russian Mathematical Olympiad 2024 - Regional Round,
Grade 9, Problem 1.

We received 5 solutions. We present the solution by Theo Koupelis.

Let the side size of the square be n, where n is a positive integer in some appropriate
unit. Let m, 1 ≤ m ≤ 2024, be the number of the checkered rectangles used to
create the square; the width of each of these rectangles is 1 and their lengths are
k1, k2, . . . , km units in increasing order, where 1 ≤ ki ≤ 2024 are positive integers
and i ∈ [1, 2, . . . ,m]. Clearly n ≥ km. The areas of the used checkered rectangles,
in increasing order, are k1 × 1, k2 × 1, . . . , km × 1 squared units, and thus

n2 = (k1 + k2 + · · ·+ km)× 1. (1)

But

k1 + k2 + · · ·+ km ≤ 1 + 2 + · · ·+ km =
km(km + 1)

2
. (2)

From (1) and (2) we get

k2m ≤ n2 ≤
km(km + 1)

2
=⇒ km ≤ 1.

Thus, Oleg cannot create a square of area greater than 1 by using some of the
checkered rectangles.

OC724. Let I ⊆ R be an open interval and f : I → R be a twice differentiable
function on I such that f(x) · f ′′(x) = 0 for all x ∈ I. Prove that f ′′(x) = 0 for
all x ∈ I.

Originally from the Romanian Mathematical Olympiad 2024 - Final Round, Grade
11, Problem 1.

We received 10 solutions. We present the solution by Michel Bataille.

Let Z = {x ∈ I : f(x) = 0}. We set I = (ω,Ω) (possibly ω = −∞, possibly
Ω =∞).

If Z = ∅, the desired result directly follows from the hypothesis.

Suppose that Z = {a} for some a in I. Then, f ′′(x) = 0 for any x ∈ (ω, a), hence
there exist real numbers α, β such that f(x) = αx+ β for all x ∈ (ω, a). Since f ′

is continuous at a, we have lim
x→a−

f ′(x) = f ′(a), hence α = f ′(a). Similarly, the

continuity of f at a gives

0 = f(a) = af ′(a) + β,
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hence β = −af ′(a) and
f(x) = xf ′(a)− af ′(a)

for all x ∈ (ω, a). In the same way, considering f on the interval (a,Ω), we obtain
f(x) = xf ′(a)− af ′(a) for all x ∈ (a,Ω). Finally,

f(x) = xf ′(a)− af ′(a)

for all x ∈ I and f ′′(x) = 0 for all x ∈ I follows.

Suppose that Z contains at least two elements, say b, c with b < c. We show the
stronger result: f(x) = 0 for all x ∈ I.

We will use the following lemma: if u, v ∈ Z with u < v, then f(x) = 0 for all
x ∈ [u, v].

Proof. Since
[f(x)f ′(x)]′ = (f ′(x))2 + f(x)f ′′(x) = (f ′(x))2

for all x ∈ I, we have∫ v

u

(f ′(x))2 dx = f(v)f ′(v)− f(u)f ′(u) = 0,

hence (since f ′ is continuous) f ′(x) = 0 for all x ∈ [u, v]. Therefore f is constant
on [u, v] and f(x) = 0 for all x ∈ [u, v].

Now, let a0 = inf Z. We show that a0 = ω. Clearly, a0 6= Ω. Assume that
a0 ∈ I. Since a0 is the limit of a sequence of elements of Z, we have f(a0) = 0
(by continuity of f) and we have f(x) 6= 0 whenever x ∈ (ω, a0). Then f ′′(x) = 0
in (ω, a0) and, as above, we deduce that

f(x) = xf ′(a0)− a0f ′(a0)

for all x ∈ (ω, a0]. From the lemma we have f(x) = 0 for x ∈ [a0, c], hence
f ′(a0) = 0, contradicting f(x) 6= 0 for x < a0. Thus, we must have a0 = ω.
Similarly, we obtain that supZ = Ω.

To conclude, take any x0 ∈ I. Since inf Z < x0 < supZ, there exist a1, a2 ∈ Z
such that a1 < x0 < a2. From the lemma, we have f(x) = 0 for all x ∈ [a1, a2]. In
particular, f(x0) = 0. This being true for any x0 ∈ I, we conclude that f(x) = 0
for all x ∈ I.

OC725. Let f : R→ R be a continuous function so that f(x)+sin(f(x)) ≥ x
for all x ∈ R. Prove that ∫ π

0

f(x) dx ≥ π2

2
− 2.

Originally from the Romanian Mathematical Olympiad 2024 - Final Round, Grade
12, Problem 1.

We received 7 solutions. We present the solution by Oliver Geupel.
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The definite integral is well-defined since the function f is continuous. The function

g : [0, π]→ [0, π] : x 7→ x+ sinx

is strictly increasing and surjective. Hence, its inverse function g−1 : [0, π]→ [0, π]
exists. For every x ∈ [0, π], it holds

g(f(x)) = f(x) + sin(f(x)) ≥ x = g
(
g−1(x)

)
.

Thus,
f(x) ≥ g−1(x)

by monotonicity of g. We conclude∫ π

0

f(x) dx ≥
∫ π

0

g−1(x) dx = π2 −
∫ π

0

g(x) = π2 −
ï
x2

2
− cosx

òπ
0

=
π2

2
− 2

as desired.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by December 15, 2025.

5071. Proposed by Michel Bataille.

Let triangle ABC be inscribed in a circle Γ with center O and let its incircle γ, with
center I, touch BC at D. Let M be the midpoint of the arc BC of Γ containing
A. If the line MD intersects γ at U 6= D and Γ at V 6= M , prove that IU and
OV are parallel.

5072. Proposed by Seán M. Stewart.

Consider the sequence of polynomials {Pn(x)}n>0 defined by the exponential gen-
erating function

1

(1− x)et + x
=
∞∑
n=0

Pn(x)
tn

n!
.

Show that
n∑
k=0

Ç
n

k

å∫ 1

0

Pk(x)Pn−k(x) dx = (−1)n.

5073. Proposed by Yun Zhang.

Let A1, A2, A3, A4 be the vertices of a tetrahedron with volume V , and let P be an
arbitrary point in its interior. For each k = 1, 2, 3, 4, let Mk denote the midpoint
of the segment AkP . For each k, construct a plane that passes through Mk that
is parallel to the face opposite Ak and intersects three edges of the tetrahedron.
This divides the original tetrahedron into four internal tetrahedra of volumes Vk.
Show that

V1 + V2 + V3 + V4 ≥
27

128
V,

with equality if and only if the point P is the centroid of the tetrahedron.

5074. Proposed by Vasile Cı̂rtoaje.

Let a, b, c, d be nonnegative real numbers such that at most one of them is larger
than 1 and ab+ bc+ cd+ da = 4. Prove that

1

ab+ 2
+

1

ac+ 2
+

1

ad+ 2
+

1

bc+ 2
+

1

bd+ 2
+

1

cd+ 2
≥ 2.
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5075. Proposed by Matt Olechnowicz.

Let m and k be positive integers. Show thatÇ
(m+ 1)k

m

å
≤ (m+ 1)

Ç
mk

m

å
.

5076. Proposed by Michael Friday.

Let O and H be the circumcenter and orthocenter of triangle ABC satisfying
∠B − ∠A = 90◦. Prove that the circumcenters of triangles BCO, CAO, BCH,
CAH, and vertex C, all lie on the same circle.

5077. Proposed by Nguyen Viet Hung.

Given a triangle ABC with the centroid G, let M be an arbitrary point inside the
triangle. The lines that pass through M parallel to the median lines intersect the
sides BC,CA,AB at X,Y, Z respectively. Prove that M,E,G are collinear, where
E is the centroid of triangle XY Z.

5078. Proposed by Tatsunori Irie.

Let n be an integer such that n ≥ 2 and let x be a positive integer. Show that the
following holds: (

1 +
x

n

)n
≥ x
Å

1

n− 1
+ 1

ãn−1
.

5079. Proposed by Torabi Dashti.

For a square ABCD, let P be a point on AB and consider a triangle PQR, where
Q is the point of intersection between DP and the diagonal AC , and R is on BC

such that ∠ADP = ∠BPR. Prove that PQ = PR if and only if AP : PB =
√
5+1
2 .

5080. Proposed by Nguyen Van Huyen.

Let a, b, c, d be positive real numbers. Prove that

a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

abcd
+ 10 ≥ (a+ b+ c+ d)

Å
1

a
+

1

b
+

1

c
+

1

d

ã
.

When does equality hold?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 décembre 2025.

5071. Soumis par Michel Bataille.

Soit le triangle ABC inscrit dans un cercle Γ de centre O et soit son cercle inscrit
γ, de centre I, tangent à BC en D. Soit M le milieu de l’arc BC de Γ contenant
A. Si la droite MD coupe γ en U 6= D et Γ en V 6= M , montrez que IU et OV
sont parallèles.

5072. Soumis par Seán M. Stewart.

Considérons la suite de polynômes {Pn(x)}n>0 définie par la fonction génératrice
exponentielle

1

(1− x)et + x
=
∞∑
n=0

Pn(x)
tn

n!
.

Montrez que
n∑
k=0

Ç
n

k

å∫ 1

0

Pk(x)Pn−k(x) dx = (−1)n.

5073. Soumis par Yun Zhang.

Soient A1, A2, A3, A4 les sommets d’un tétraèdre de volume V , et soit P un point
arbitraire à l’intérieur de celui-ci. Pour chaque k = 1, 2, 3, 4, soit Mk le milieu
du segment AkP . Pour chaque k, construisez un plan passant par Mk qui soit
parallèle à la face opposée à Ak et qui coupe trois arêtes du tétraèdre. Cela divise
le tétraèdre d’origine en quatre tétraèdres internes de volumes Vk. Montrez que

V1 + V2 + V3 + V4 ≥
27

128
V,

avec égalité si et seulement si le point P est le centre de gravité du tétraèdre.

5074. Soumis par Vasile Cı̂rtoaje.

Soient a, b, c, d des nombres réels non négatifs tels que tout au plus un d’entre eux
soit supérieur à 1 et que ab+ bc+ cd+ da = 4. Montrez que

1

ab+ 2
+

1

ac+ 2
+

1

ad+ 2
+

1

bc+ 2
+

1

bd+ 2
+

1

cd+ 2
≥ 2.
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5075. Soumis par Matt Olechnowicz.

Soient m et k des entiers positifs. Montrez queÇ
(m+ 1)k

m

å
≤ (m+ 1)

Ç
mk

m

å
.

5076. Soumis par Michael Friday.

Soient O et H respectivement le centre du cercle circonscrit et le centre du cercle
inscrit au triangle ABC tel que ∠B − ∠A = 90◦. Montrez que les centres des
cercles circonscrits aux triangles BCO, CAO, BCH et CAH et au sommet C
sont tous situés sur le même cercle.

5077. Soumis par Nguyen Viet Hung.

Soit un triangle ABC dont le centre de gravité est G. Soit M un point arbitraire à
l’intérieur du triangle. Les droites passant par M parallèles aux médianes coupent
les côtés BC,CA et AB respectivement en X,Y et Z. Montrez que M,E et G
sont colinéaires, où E est le centre de gravité du triangle XY Z.

5078. Soumis par Tatsunori Irie.

Soit n un entier tel que n ≥ 2 et soit x un entier positif. Montrez que la relation
suivante est vérifiée : (

1 +
x

n

)n
≥ x
Å

1

n− 1
+ 1

ãn−1
.

5079. Soumis par Torabi Dashti.

Étant donné un carré ABCD, soit P un point sur AB et considérons un triangle
PQR, où Q est le point d’intersection de DP et de la diagonale AC et R est sur
BC de telle sorte que ∠ADP = ∠BPR. Montrez que PQ = PR si et seulement si

AP : PB =
√
5+1
2 .

5080. Soumis par Nguyen Van Huyen.

Soient a, b, c, d des nombres réels positifs. Montrez que

a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2

abcd
+ 10 ≥ (a+ b+ c+ d)

Å
1

a
+

1

b
+

1

c
+

1

d

ã
.

Quand a-t-on égalité ?
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2025: 51(3), p. 136–140.

5021. Proposed by Tran Quang Hung.

Let OAB and OCD be two equilateral triangles oriented in the same direction,
with centers K and L respectively. The lines AB and CD intersect the lines OC
and OB at F and E, respectively. Let P be the intersection point of lines AE and
DF . Prove that OP is perpendicular to KL.

We received 12 solutions, all correct. The majority of solutions involve heavy
algebraic manipulations through the introduction of coordinates. We present the
solution by Chikara Tsugawa (slightly edited), which adopts an elegant geometric
approach. The same solution was independently proposed by J. Chris Fisher.

We prove the following more general statement.

Suppose that 4OAB ∼ 4OCD have the same orientation and let K
and L be their circumcenters. The lines AB and CD intersect the lines
OC and OB at F and E respectively. Let P be the intersection of AE
and DF . Then OP is perpendicular to KL.

Let Q be the intersection of AC and BD.

Applying Pappus’s theorem to the two triples (A,B, F ) and (D,C,E) shows that
the points O,P,Q are collinear. Furthermore, since 4OAB ∼ 4OCD with the
same orientation, it follows that the spiral similarity with center O that carries
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A to B also sends C to D. This implies that 4OCA ∼ 4ODB with the same
orientation. Hence, working with directed angles,

]OAQ = ]OAC = ]OBD = ]OBQ,

]OCQ = ]OCA = ]ODB = ]ODQ.

Consequently, the points O,A,B,Q are concyclic, as are the points O,C,D, and
Q. Hence OP is the radical axis of these two circles and is therefore perpendicular
to the line through their centers, namely KL.

5022. Proposed by Michel Bataille.

Let ABC be a triangle inscribed in a circle Γ with center O and let I be its
incenter. The line AI intersects BC at D and Γ again at U . The perpendicular to
OC through D intersects the lines AC and CU at M and N , respectively. Prove
that M,A,B,D are concyclic and that DN = DC.

We received 12 solutions, all correct. We present the solution by Chikara Tsugawa
(slightly edited). Many readers proposed similar angle chasing solutions.

Let ∠CAB = α.

By the inscribed angle theorem, ∠BOC = 2∠BAC = 2α, and since OB = OC,
we have ∠OCB = π

2 − α. Consequently,

∠MDC =
π

2
− ∠OCB =

π

2
−
(π

2
− α

)
= α = ∠MAB.

It follows that the points M,A,B,D are concyclic. Since AI bisects ∠CAB,

∠DCN = ∠BAD =
α

2
.
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Moreover,

∠DNC = ∠MDC − ∠DCN = α− α

2
=
α

2
.

Therefore, we have DN = DC.

Editor’s Comments. Chikara Tsugawa also observed that for the first part of the
problem the assumption that AD bisects ∠BAC can be dropped.

5023. Proposed by Mihaela Berindeanu, modified by the Editorial Board.

Let f(x) =
lnx

x2 + n2
. Find limn→∞

∫ n2

1
f(x)dx

f(n) . †

We received 20 solutions, of which 14 were correct and complete. We present the
solution by Didier Pinchon.

For f(x) = ln x
x2+n2 , n > 1, let In denote the function

In =
1

nf(n)

∫ n2

1

f(x) dx =
2n

lnn

∫ n2

1

lnx

x2 + n2
dx.

In may be written In = Jn +Kn with

Jn =
2n

lnn

∫ n

1

lnx

x2 + n2
dx and Kn =

2n

lnn

∫ n2

n

lnx

x2 + n2
dx.

Using the change of variables x = nu in Jn,

Jn =
2

lnn

∫ 1

1/n

ln(nu)

1 + u2
du = 2

∫ 1

1/n

du

1 + u2
+

2

lnn

∫ 1

1/n

lnu

1 + u2
du,

and using the change of variables x = n/u in Kn,

Kn =
2

lnn

∫ 1

1/n

ln(n/u)

1 + u2
du = 2

∫ 1

1/n

du

1 + u2
− 2

lnn

∫ 1

1/n

lnu

1 + u2
du.

Therefore

In = Jn +Kn = 4

∫ 1

1/n

du

1 + u2
= 4

ï
arctan(1)− arctan

( 1

n

)ò
= π − 4 arctan

( 1

n

)
,

so

lim
n→+∞

In = π and lim
n→∞

∫ n2

1
f(x) dx

f(n)
= lim
n→∞

nIn =∞.

†Please note that while computer-generated solutions are welcome, they will not be counted
in the total tally when the problem can be solved without such aids. At Crux , we would like to
encourage the pursuit of the solutions, not just the arrival at the final destination.
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5024. Proposed by Tatsunori Irie.

Consider the Fibonacci sequence fn for n = 1, 2, . . . defined by f1 = f2 = 1 and
fn+2 = fn+1 + fn. For any odd prime p, find p different terms among f1, . . . , f2p
whose sum is divisible by p.

We received 11 solutions, out of which we present the one by the Eagle Problem
Solvers, lightly edited.

If p = 5, then

f1 + f3 + f5 + f7 + f9 = 1 + 2 + 5 + 13 + 34 = 55,

which is divisible by p = 5. The remaining odd primes are either congruent to
±1 modulo 10 or congruent to ±3 modulo 10. Let π(p) denote the period of the
Fibonacci sequence modulo p, the Pisano period. It is known that π(p) divides
p− 1, if p ≡ ±1 (mod 10), whereas π(p) divides 2p+ 2, if p ≡ ±3 (mod 10).

Note that the sum of the first p even Fibonacci numbers is

p∑
k=1

f2k =

p∑
k=1

(f2k+1 − f2k−1) = f2p+1 − f1 = f2p+1 − 1. (1)

Let p ≡ ±1 (mod 10). Then

f2p+1 ≡ f3 ≡ 2 (mod p) .

Replacing f4 = 3 with f3 = 2 in (1) we obtain

f2 + f3 + f6 + f8 + · · ·+ f2p = f2p+1 − 2 ≡ f3 − 2 ≡ 0 (mod p) .

On the other hand, if p ≡ ±3 (mod 10), then

f2p+2 ≡ f0 ≡ 0 (mod p) , and

f2p+3 ≡ f1 ≡ 1 (mod p) ,

which means that

f2p+1 = f2p+3 − f2p+2 ≡ f1 − f0 ≡ 1− 0 ≡ 1 (mod p) .

Thus, from (1),

f2 + f4 + · · ·+ f2p = f2p+1 − 1 ≡ 1− 1 ≡ 0 (mod p) .

Editor’s Comments. As was pointed out by our reader C.R. Pranesachar, this
result also follows directly from the Erdős-Ginzburg-Ziv theorem that states that
for any positive integer n, any multiset of Z/nZ of size 2n−1 contains a submultiset
of size n whose sum is congruent to 0 modulo n.
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5025. Proposed by Michael Friday, modified by the Editorial Board.

Let ABCD be a convex cyclic quadrilateral. Let DaDbDc be the triangle obtained
by joining the midpoints of DA, DB, DC; similarly define AbAcAd. Prove that
the triangles DaDbDc and AbAcAd have the same orthocenter.

We received 13 solutions of which 11 were complete and correct. We present the
solution by M. Bello, M. Benito, Ó. Ciaurri and E. Fernández.

Let O be the center of the circumscribed circle of quadrilateral ABCD, Bc the
midpoint of BC and M the midpoint of AcDb.

First show that 4AbBcAc and 4BcDcDb have the same orthocenter. Note that
4AbBcAc (T1 in the diagram) has as its vertices the midpoints of the sides of
4ABC, whence the orthocenter of 4AbBcAc is the circumcenter of 4ABC,
namely O. Similarly, the orthocenter of 4BcDcDb (T2 in the diagram) is the
circumcenter of 4BCD, which is likewise O.

Next, consider 4DaDbDc. Since Da and Db are the midpoints of DA and DB
respectively, we have DaDb||AB and DaDb = 1

2 AB. Continuing in this manner for
all the edges of4DaDbDc we conclude that4DaDbDc has all its edges parallel and
congruent to those of 4BcAcAb, so that a 180◦ rotation about M (the midpoint of
AcDb) maps 4BcAcAb to 4DaDbDc. Moreover, a similar argument shows that

Copyright © Canadian Mathematical Society, 2025



392/ Solutions

the same 180◦ rotation about M maps 4DcDbBc to 4AbAcAd. We can thus
conclude that 4AbAcAd and 4DaDbDc have a common orthocenter, namely the
image of O under a 180◦ rotation about M (this common orthocenter is denoted
H in the diagram).

Editor’s Comments. It follows quickly that the point H lies on the line through the
midpoint of a side of the cyclic quadrilateral that is perpendicular to the opposite
side; see Nathan Altshiller Court’s College Geometry, Theorem 258, p. 131. The
Wikipedia article on cyclic quadrilaterals calls these lines maltitudes (which is
short for midpoint altitudes), and their common point H, the anticenter of the
cyclic quadrilateral. The proposer suggests R.A. Johnson’s Advanced Euclidean
Geometry, pages 251-253 for a discussion of further properties of the configuration.

5026. Proposed by Eugen J. Ionaşcu.

Let n ≥ 3 be an integer. We denote by [x] the greatest integer part of x = n√
3

and

let {x} = x− [x] be its fractional part.

(a) If C ∈ (0, 13 ], prove that the following equivalence holds:

{x} < 1

3
(1)

if and only if

{x} <

 
[x]2 +

2[x]

3
+ C − [x], (2)

(b) If C > 1
3 , prove that for every M > 0, there exists n > M such that (2) is true

but (1) is not.

(c) If C ≤ 0, prove that for every M > 0, there exists n > M such that (1) is true
but (2) is not.

The problem is inspired by problem 1285 from The College Mathematics Journal.

We received 4 submissions and 3 of them were complete and correct. We present
the following solution by the majority of solvers.

Observe that (1) is equivalent to x < [x]+ 1
3 , which is equivalent to 9x2 < (3[x]+1)2,

that is, 3n2 < (3[x] + 1)2. Observe that (2) is equivalent to

x2 < [x]2 +
2[x]

3
+ C,

⇐⇒ 9x2 < 9[x]2 + 6[x] + 9C,

⇐⇒ 3n2 < (3[x] + 1)2 + (9C − 1).

(a) Assume that C ∈ (0, 13 ]. Note that 3n2 ≡ 0 (mod 3) and (3[x] + 1)2 ≡ 1
(mod 3). If (1) holds, then

3n2 < (3[x] + 1)2;
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by considering modulo 3, we also have

3n2 ≤ (3[x] + 1)2 − 1

and thus (2) holds. If (2) holds, that is,

3n2 < (3[x] + 1)2 + 2;

by considering modulo 3, we also have

3n2 < (3[x] + 1)2

and thus (1) holds.

(b) In view of the proof of part (a), it suffices to construct sufficiently large n with

3n2 = (3[x] + 1)2 + 2.

To this end, we consider the positive integer solutions of the generalized Pell
equation y2 − 3z2 = −2 with y ≡ 1 (mod 3). The fundamental solution of the
associated Pell equation y2 − 3z2 = 1 is (y, z) = (2, 1), and the smallest solution
to y2 − 3z2 = −2 is (y, z) = (1, 1). Thus, the general solution to y2 − 3z2 = −2 is

ym +
√

3zm = (1 +
√

3)(2 +
√

3)m.

Note that (y0, z0) = (1, 1), (y1, z1) = (5, 3), (y2, z2) = (19, 11). Using induction, it
is easy to show that ym ≡ 1 (mod 3) if and only if m is even.

Let m be a sufficiently large even number so that n = zm > M . Note that

ym −
√

3n = ym −
√

3zm =
−2

ym +
√

3zm
=

−2

(2 +
√

3)m(1 +
√

3)
∈ (−1, 0).

It follows that
ym
3
<

n√
3
<
ym + 1

3
.

Since ym ≡ 1 (mod 3), it follows that [x] = [n/
√

3] = ym−1
3 and therefore we have

3n2 = (3[x] + 1)2 + 2,

as required.

(c) In view of the proof of part (a), it suffices to construct sufficiently large n with

3n2 = (3[x] + 1)2 − 1.

Similar to (b), we consider solutions of the Pell equation y2 − 3z2 = 1 with y ≡ 1
(mod 3). The general solution to the equation is

ym +
√

3zm = (2 +
√

3)m.
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By a similar argument as in the proof of (b), if we take n = zm, where m is a
sufficiently large even number so that n = zm > M , then [x] = [n/

√
3] = ym−1

3
and 3n2 = (3[x] + 1)2 − 1.

5027. Proposed by George Apostolopoulos.

Let ABC be a triangle with inradius r and circumradius R. Prove that

cot2A+ cot2B + cot2 C ≤ 8

Å
R

2r

ã2
− 7.

We received 18 submissions of which 14 were correct and complete. Heron’s for-
mula together with Euler’s inequality is sufficient to solve the problem. We present
two solutions.

Solution 1, by the proposer (In Memoriam) and Kevin Soto Palacios indepen-
dently, slightly altered by the editor.

Let a, b, c be the lengths of the sides BC,CA,AB, respectively. Then

cot2A+ cot2B + cot2 C =
cos2A

sin2A
+

cos2B

sin2B
+

cos2 C

sin2 C

=
1− sin2A

sin2A
+

1− sin2B

sin2B
+

1− sin2 C

sin2 C

=
1

sin2A
+

1

sin2B
+

1

sin2 C
− 3

=
1(
a
2R

)2 +
1(
b
2R

)2 +
1(
c
2R

)2 − 3

= 4R2

Å
1

a2
+

1

b2
+

1

c2

ã
− 3. (1)

On the right hand side, we have

8

Å
R

2r

ã2
− 7 = 2

Å
R

r

ã2
− 7 ≥

Å
R

r

ã2
+ 4− 7 = 4R2 · 1

4r2
− 3, (2)

where we used Euler’s inequality R ≥ 2r.

Thus, to complete the proof, it suffices to show the following lemma.

Lemma.
1

a2
+

1

b2
+

1

c2
≤ 1

4r2
.

Proof of Lemma. We have (b− c)2 ≥ 0, which implies a2− (b− c)2 ≤ a2 and hence

1

a2
≤ 1

a2 − (b− c)2
=

1

(a+ b− c)(a− b+ c)
.

Let 2s = a+ b+ c. Then a+ b− c = 2(s− c), a− b+ c = 2(s− b), so

1

a2
≤ 1

4(s− b)(s− c)
. Similarly,

1

b2
≤ 1

4(s− c)(s− a)
,

1

c2
≤ 1

4(s− a)(s− b)
.
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Thus we have

1

a2
+

1

b2
+

1

c2
≤ 1

4

Å
1

(s− b)(s− c)
+

1

(s− c)(s− a)
+

1

(s− a)(s− b)

ã
≤ 3s− (a+ b+ c)

4(s− a)(s− b)(s− c)

=
s

4r2s
(Heron: rs =

»
s(s− a)(s− b)(s− c))

=
1

4r2
.

Using the lemma to connect equations (1) and (2), we conclude that

cot2A+ cot2B + cot2 C ≤ 8

Å
R

2r

ã2
− 7,

with equality if and only if the triangle is equilateral.

Solution 2, by Theo Koupelis.

Let a, b, c, E be the side lengths and area of the triangle, respectively.

From E = 1
2bc sinA, we deduce

cot2A =
1− sin2A

sin2A
=
b2c2

4E2
−1; similarly cot2B =

c2a2

4E2
−1, cot2 C =

a2b2

4E2
−1.

Then, by substituting 4R = abc/E and r = 2E/(a + b + c) into the desired
inequality, we obtain an equivalent expression

(16E2)2 + 16E2(a2b2 + b2c2 + c2a2)− 2a2b2c2(a+ b+ c)2 ≤ 0. (∗)

Let (a, b, c) = (x + y, y + z, z + x), where x, y, z are the lengths of the external
tangents from the vertices B,C,A, respectively, to the incircle of the triangle. For
convenience, let p := x + y + z, q := xy + yz + zx, and r := xyz. Recall Herons
formula E2 = xyz(x+ y+ z). With these changes of variables (∗) can be rewritten
as

32pr2 + 2r(p4 + q2 − 2p2q + 4pr)− p(pq − r)2 ≤ 0.

Simplifying the expression, it becomes

q2(p3 − 2r) + 2p2rq − 2p4r − 39pr2 ≥ 0.

By the AM–GM inequality we have pq ≥ 9r, and q2 ≥ 3pr. Thus it suffices to
show that

3pr(p3 − 2r) + 2pr · 9r − 2p4r − 39pr2 ≥ 0⇐⇒ pr(p3 − 27r) ≥ 0,

which is true since p3 ≥ 27r by AM–GM again. Equality holds for equilateral
triangles.
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Editor’s Comments. Another common approach was to first cite a theorem ex-
pressing the cotangents directly in terms of R, r, and s, and then proceed via
Gerretsen inequality. Some solvers also employed additional tools, such as the
general Muirhead inequalities. Among all the creative submissions, that of the
late proposer stands out as especially elementary and elegant.

5028. Proposed by Traian M. Ulpiu.

Find all differentiable functions f : (0,∞) → R with f(1) = 1 that satisfy the
equation f ′(x) = f(1/x) for all x > 0.

We received 17 submissions of which 14 were correct and complete. We present
the solution by Brian Bradie.

From f ′(x) = f(1/x) for x > 0 it follows in particular that f ′(1) = f(1) = 1.
Because f is differentiable on (0,∞) and 1/x is differentiable on (0,∞), it follows
that f(1/x) is differentiable on (0,∞); hence, f ′(x) = f(1/x) is differentiable on
(0,∞). Moreover,

f ′′(x) = (f ′(x))′ = (f(1/x))′ = − 1

x2
f ′(1/x) = − 1

x2
f(x);

that is,

x2f ′′(x) + f(x) = 0,

which is an Euler-Cauchy equation for f . Using the test function f(x) = xr for
some constant r yields the characteristic equation

r(r − 1) + 1 = 0

whose roots are

r =
1

2
± i
√

3

2
.

The general solution to the Euler-Cauchy equation for f is thus

f(x) = c1
√
x cos

Ç√
3

2
lnx

å
+ c2
√
x sin

Ç√
3

2
lnx

å
.

The initial condition f(1) = 1 leads to c1 = 1. Next,

f ′(x) =

Ç
c1

2
√
x

+
c2
√

3

2
√
x

å
cos

Ç√
3

2
lnx

å
+

Ç
c2

2
√
x
− c1

√
3

2
√
x

å
sin

Ç√
3

2
lnx

å
,

so the condition f ′(1) = 1 leads to c2 = 1/
√

3. Therefore the real-valued function
satisfying the given conditions is

f(x) =
√
x cos

Ç√
3

2
lnx

å
+

…
x

3
sin

Ç√
3

2
lnx

å
.
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It is easy to verify that for this function we indeed have f(1) = f ′(1) = 1, as well
as

f ′(x) =
1√
x

cos

Ç√
3

2
lnx

å
− 1√

3x
sin

Ç√
3

2
lnx

å
= f(1/x).

5029. Proposed by Vasile Cirtoaje and Vo Quoc Ba Can.

Let n be a positive integer with n ≥ 3. Prove that n − 1 is the largest positive
value of the constant k such that the inequality

1

a1 + k
+

1

a2 + k
+ · · ·+ 1

an + k
≥ n

1 + k
.

holds for any nonnegative real numbers a1, a2, . . . , an with∑
1≤i<j≤n

aiaj =
n(n− 1)

2
.

We received 3 submissions and 2 of them were complete and correct. We feature
the following two solutions, slightly modified by the editor.

Suppose k is such that the conclusion holds. Let x > 0 and consider the sequence

(a1, a2, . . . , an) = (x, n(n−1)2x , 0, . . . , 0); we get

1

x+ k
+

1
n(n−1)

2x + k
+
n− 2

k
≥ n

1 + k
.

Letting x→∞, we conclude that

1

k
+
n− 2

k
≥ n

1 + k
,

that is, k ≤ n− 1.

It remains to show that the given inequality holds for k = n− 1, that is,

1

a1 + (n− 1)
+ · · ·+ 1

an + (n− 1)
≥ 1. (1)

Next, we present two different proofs of inequality (1).

Solution 1, by Michal Adamaszek.

For each 0 ≤ i ≤ n, let σi be the i-th elementary symmetric polynomial of ai.
Since σ2 =

(
n
2

)
, by Maclaurin’s inequality, σi ≤

(
n
i

)
for each i ≥ 2.

By clearing the denominators, observe that inequality (1) is equivalent to∑
1≤i1<···<in−1≤n

(ai1 +(n−1)) · · · (ain−1
+(n−1)) ≥ (a1 +(n−1)) · · · (an+(n−1)).
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After expansion, it suffices to show that

n−1∑
i=0

(n− 1)n−i−1(n− i)σi ≤
n∑
i=0

(n− 1)n−iσi,

equivalently,

(n− 1)n−1 ≥
n∑
i=2

(n− 1)n−i−1(i− 1)σi.

Since σi ≤
(
n
i

)
for each i ≥ 2, by the binomial theorem, we have

n∑
i=2

(n− 1)n−i−1(i− 1)σi

≤
n∑
i=2

(n− 1)n−i−1(i− 1)

Ç
n

i

å
=

n

n− 1

n∑
i=2

(n− 1)n−1−(i−1)
Ç
n− 1

i− 1

å
− 1

n− 1

n∑
i=2

(n− 1)n−i
Ç
n

i

å
=

n

n− 1
(nn−1 − (n− 1)n−1)− 1

n− 1
(nn − (n− 1)n − n(n− 1)n−1)

= (n− 1)n−1,

as required.

Solution 2, by the proposer.

For each 1 ≤ i ≤ n, set

bi =
ai

ai + n− 1
∈ [0, 1).

Note that
n∑
i=1

bi =
n∑
i=1

ai
ai + n− 1

= n− (n− 1)
n∑
i=1

1

ai + n− 1
.

Thus, to show inequality (1), it suffices to show that
∑n
i=1 bi ≤ 1. Since

ai =
(n− 1)bi

1− bi
for each i, we have ∑

1≤i<j≤n

bibj
(1− bi)(1− bj)

=
n

2(n− 1)
.

By the Cauchy-Schwarz inequality, we have ∑
1≤i<j≤n

bibj(1− bi)(1− bj)

 ∑
1≤i<j≤n

bibj
(1− bi)(1− bj)

 ≥
Ñ ∑

1≤i<j≤n
bibj

é2

.
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It follows that

4(n− 1)

n

Ñ ∑
1≤i<j≤n

bibj

é2

≤ 2
∑

1≤i<j≤n
bibj(1− bi)(1− bj). (2)

Next we give an upper bound on the right-hand side of (2). Set xi = bi(1− bi) for
1 ≤ i ≤ n. By the Cauchy-Schwarz inequality, we have

2
∑

1≤i<j≤n
bibj(1− bi)(1− bj)

= 2
∑

1≤i<j≤n
xixj =

(
n∑
i=1

xi

)2

−
n∑
i=1

x2i ≤

(
n∑
i=1

xi

)2

− 1

n

(
n∑
i=1

xi

)2

=
n− 1

n

(
n∑
i=1

xi

)2

=
n− 1

n

(
n∑
i=1

bi −
n∑
i=1

b2i

)2

. (3)

Thus, comparing inequalities (2) and (3), we getÅ n∑
i=1

bi

ã2
−

n∑
i=1

b2i = 2
∑

1≤i<j≤n
bibj ≤

n∑
i=1

bi −
n∑
i=1

b2i ,

that is,
∑n
i=1 bi ≤ 1, as required.

5030. Proposed by Daniel Sitaru.

Let 0 < a ≤ b and c > 0 be real numbers. Show that

∫ b

a

∫ b

a

x+ y√
xy + c

dxdy ≤ (b2 − a2) ln
( b+

√
b2 + c

a+
√
a2 + c

)

We received 8 submissions, of which 3 were correct and complete. We present the
solution by Michal Adamaszek, modified by the editor.

Let x, y, c ∈ R+. We start by proving the following inequality:

x+ y√
xy + c

≤ x√
y2 + c

+
y√

x2 + c
.
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The proof of this inequality is obtained by the following calculation:

x+ y√
xy + c

− x√
y2 + c

− y√
x2 + c

= x

Ç
1√

xy + c
− 1√

y2 + c

å
+ y

Å
1√

xy + c
− 1√

x2 + c

ã
= x

√
y2 + c−

√
xy + c

√
xy + c

√
y2 + c

+ y

√
x2 + c−

√
xy + c

√
xy + c

√
x2 + c

)

= x
y2 − xy

√
xy + c

√
y2 + c(

√
xy + c+

√
y2 + c)

+ y
x2 − xy

√
xy + c

√
x2 + c(

√
xy + c+

√
x2 + c)

=
xy(y − x)√
xy + c

Ç
1√

y2 + c(
√
xy + c+

√
y2 + c)

− 1√
x2 + c(

√
xy + c+

√
x2 + c)

å
=

xy(y − x)√
xy + c

Ç√
x2 + c(

√
xy + c+

√
x2 + c)−

√
y2 + c(

√
xy + c+

√
y2 + c)√

y2 + c
√
x2 + c(

√
xy + c+

√
y2 + c)(

√
xy + c+

√
x2 + c)

å
=

xy(y − x)√
xy + c

√
xy + c(

√
x2 + c−

√
y2 + c) + x2 − y2√

y2 + c
√
x2 + c(

√
xy + c+

√
y2 + c)(

√
xy + c+

√
x2 + c)

Note that the denominator is positive. We focus on the numerator.

xy(y − x)
Ä√

xy + c(
√
x2 + c−

√
y2 + c) + x2 − y2

ä
= xy(y − x)

Ç √
xy + c√

x2 + c+
√
y2 + c

(x2 − y2) + x2 − y2
å

= −xy(y − x)2(x+ y)

Ç √
xy + c√

x2 + c+
√
y2 + c

+ 1

å
≤ 0.

This completes the proof of the inequality. As for the problem, we now have:∫ b

a

∫ b

a

x+ y√
xy + c

dxdy ≤
∫ b

a

∫ b

a

x√
y2 + c

dxdy +

∫ b

a

∫ b

a

y√
x2 + c

dxdy

= 2

∫ b

a

∫ b

a

x√
y2 + c

dxdy

= 2

∫ b

a

xdx ·
∫ b

a

1√
y2 + c

dy

= 2 ·
Å
b2 − a2

2

ã
·
Ç

ln (b+
√
b2 + c)

ln (a+
√

(a2 + c)

å
,

as desired.
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