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La Société mathématique du Canada permet aux lecteurs de reproduire des articles de la présente publication à des
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4/ Editorial

EDITORIAL
Have you come across an interesting problem lately? Do you have a comment to
make about matters mathematical?

In March 1975, 6 mathematicians asked these questions in No. 1 issue of Eu-
reka, a magazine that will eventually become known as Crux. R. Duff Butterill,
H. G. Dworschak, Viktors Linis, F. G. B. Maskell, Léo Sauvé and Richard J.
Semple formed the original editorial board. As members of the Carleton-Ottawa
Mathematics Association, they were looking for a forum where answers to the
aforementioned questions will be shared amongst members of the mathematical
community of Ottawa region. In the initial issue, editors asked the readership
to show their support in 4 ways: join a mailing list (snail mailing list at that),
propose problems for publication, send solutions to the proposed problems, send
in any material with “some relevance, however far-fetched, to mathematics”.

You are now looking at Volume 50. Crux is an international open-access journal,
reaching audiences far beyond Ottawa region, but we remain true to our roots –
our main goal is for our readership to get involved in the journal by sending in
material with some relevance to mathematics. Without sounding too grandiose,
the journal is a true testament to the never-ending joy of problem solving that
defines the mathematical community.

Here’s to the 50 years of Crux. And many more to come!

Kseniya Garaschuk

Crux Mathematicorum, Vol. 50(1), January 2024



MathemAttic /5

MATHEMATTIC
No. 51

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by March 15, 2024.

MA251. Bob is practicing addition in base 2. Each time he adds two
numbers in base 2, he counts the number of carries. For example, when summing
the numbers 1001 and 1011 in base 2, there are three carries (shown on the top
row).

1 1 1

0 1 0 0 1
0 1 0 1 1
1 0 1 0 0

Suppose that Bob starts with the number 0 and adds 111 (i.e. 7 in base 2) to it
one hundred times to obtain the number 1010111100 (i.e. 700 in base 2). How
many carries occur (in total) in these one hundred calculations?

MA252. An Indian raga has two kinds of notes: a short note, which lasts for
1 beat, and a long note, which lasts for 2 beats. For example, there are 3 ragas
which are 3 beats long: 3 short notes, a short note followed by a long note, and
a long note followed by a short note. How many Indian ragas are 11 beats long?
Justify your answer.

MA253. Let n ≥ 2 be an integer. There are n houses in a town. All
distances between pairs of houses are different. Every house sends a visitor to the
house closest to it. Find all possible values of n (with full justification) for which
we can design a town with n houses where every house is visited.

MA254. A sequence a1, a2, . . . satisfies a1 = 5
2 and an+1 = a2n − 2 for all

n ≥ 1. Let M be the integer closest to a2023. Find the last digit of M .

MA255. A 3×3×3 cube of cheese is sliced into twenty-seven 1×1×1 blocks.
A mouse starts anywhere on the outside and eats one of the 1 × 1× 1 cubes. He
then moves to an adjacent cube (in any direction), eats that cube, and continues
until he has eaten all 27 cubes. (Two cubes are considered adjacent if they share

Copyright © Canadian Mathematical Society, 2024
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6/ MathemAttic

a face.) Prove that no matter what strategy the mouse uses, he cannot eat the
middle cube last. (Note: One should neglect gravity: intermediate configurations
dont collapse.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mars 2024.

MA251. Bob s’entrâıne à faire des additions en base 2. Chaque fois qu’il
additionne deux nombres en base 2, il compte le nombre de retenues. Par exem-
ple, lorsqu’il additionne les nombres 1001 et 1011 en base 2, il y a trois retenues
(illustrées sur la ligne supérieure).

1 1 1

0 1 0 0 1
0 1 0 1 1
1 0 1 0 0

Supposons que Bob commence avec le nombre 0 auquel il ajoute cent fois 111
(c’est-à-dire 7 en base 2) pour obtenir le nombre 1010111100 (à savoir 700 en base
2). Combien de retenues y a-t-il eu (au total) dans ces cent calculs ?

MA252. Un raga indien comporte deux figures de notes : une figure de note
courte, qui dure un temps, et une figure de note longue, qui dure deux temps. Par
exemple, il y a 3 ragas qui durent 3 temps : 3 notes courtes, une note courte suivie
d’une note longue, et une note longue suivie d’une note courte. Combien de ragas
indiens ont une durée de 11 temps ? Justifiez votre réponse.

MA253. Soit n ≥ 2 un entier. Il y a n maisons dans une ville. Toutes les
distances entre les paires de maisons sont différentes. Chaque maison envoie un
visiteur á la maison la plus proche. Trouvez toutes les valeurs possibles de n (avec
justification complète) pour lesquelles on peut concevoir une ville avec n maisons
où chaque maison est visitée.

MA254. Une suite a1, a2, . . . satisfait a1 = 5
2 et an+1 = a2n − 2 pour tout

n ≥ 1. Soit M l’entier le plus proche de a2023. Trouvez le dernier chiffre de M .

Crux Mathematicorum, Vol. 50(1), January 2024
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MA255. Un cube de fromage de 3 × 3 × 3 est découpé en vingt-sept blocs
de 1 × 1 × 1. Une souris commence n’importe où á l’extérieur et mange l’un des
cubes de 1. Elle se déplace ensuite vers un cube adjacent (dans n’importe quelle
direction), mange ce cube et continue jusqu’á ce qu’elle ait mangé les 27 cubes.
(Deux cubes sont considérés comme adjacents s’ils partagent une face.) Montrez
que, quelle que soit la stratégie utilisée par la souris, elle ne peut pas manger le
cube du milieu en dernier. (Note : Il faut négliger la gravité: les configurations
intermédiaires ne s’effondrent pas).

Copyright © Canadian Mathematical Society, 2024
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2023: 49(6), p. 287–289.

MA226. The numbers a, b and c are in arithmetic sequence. The numbers
b, c and d are in geometric sequence. If a = 1.27, d = 3.68 and c is positive,
determine c.

Originally from 1988 Illinois CTM, State Finals AA, Calculating Competition,
Question 20.

We received 7 submissions, all correct and complete. We present the solution by
the Missouri State University Problem Solving Group.

We have b = a + x, c = a + 2x, c = rd, and b = r2d. Eliminating x in the first
pair of equations gives a = 2b− c. Using the second pair of equations gives

2dr2 − dr − a = 0.

Solving for r, we have

r =
d±
√

8ad+ d2

4d
.

Letting a = 127/100 and d = 368/100, we find

r =
46 +

√
7958

184

(r must be positive for c to be positive). Hence

c = rd =
46 +

√
7958

50
≈ 2.70415.

MA227. Find and prove the general formula for the square root of the
product of four consecutive integers plus 1.

Originally from Mathematics Competitions Vol. 34, #1 (2021), A brief history of
the South African Mathematics Olympiad, Easy interesting problems with clever
solutions, example 1.

We received 7 submissions of which 5 were correct and complete. We present the
solution by Mihika Bansal, slightly modified by the editor.

Let n be a positive integer.

We are interested in the formula for
√
n(n+ 1)(n+ 2)(n+ 3) + 1. Rearranging

the terms before multiplying the expression under the root, we get:

n(n+1)(n+2)(n+3)+1 = n(n+3)(n+1)(n+2)+1 = (n2 +3n)(n2 +3n+2)+1.

Crux Mathematicorum, Vol. 50(1), January 2024
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Let x = n2 + 3n, then we have:

(n2 + 3n)(n2 + 3n+ 2) + 1 = x(x+ 2) + 1 = x2 + 2x+ 1 = (x+ 1)2.

Putting everything back together, we get:»
n(n+ 1)(n+ 2)(n+ 3) + 1 =

»
(x+ 1)2 = x+ 1 = n2 + 3n+ 1.

Note that this means that the square root of the product of four consecutive
integers plus 1 is equal to the product of the smallest and the largest of these four
consecutive integers plus 1.

MA228. Two circles with radii r1 and of r2 are a distance d apart from each
other. A point P is to be placed on the line connecting the centers of the two
circles so that the tangent lines to the circles go through the point forming angles
φ and ψ as shown below. How far from the center of the left circle should one
place the point P so that φ = ψ? Write your answer in terms of r1, r2, and d.

φ ψ

d

r1
r2

P

Originally question 10 from the 35th University of Alabama High School Mathe-
matics Tournament: Team Competition, 2016.

We received 3 solutions for this problem. The following is the solution by Luyu
Han.

O1 O2

P

C

D

A φ

E

F

Bψ

r1

r2

d

Connect O1O2. Denote the intersection of O1O2 with two circles by A and B,
respectively. Denote C,D,E, and F the tangent points as shown in the figure.

Copyright © Canadian Mathematical Society, 2024
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Since PC and PD are tangent to circle O1, PC = PD and ∠O1CP = ∠O1DP =
90o. On the other hand O1P is the hypotenuse of 4O1CP and 4O1DP. So,
4O1CP is congruent to 4O1DP. Then we have ∠CPO1 = ∠DPO1 = φ

2 . Simi-

larly, we can get ∠EPO2 = ∠FPO2 = ψ
2 .

If φ = ψ, then, in right-angled 4O1CP and 4O2EP, we have ∠CPO1 = ∠EPO2.
So, 4O1CP is similar to 4O2EP. So,

O1C

O2E
=
O1P

O2P
.

Let PA = a. Since A,P and B fall on O1O2, we have PB = d − a. Note that
O1C = r1 and O2E = r2. So,

r1
r2

=
r1 + a

d− a+ r2
.

Solving this equation, we get a = r1d
r1+r2

and so

O1P = r1 + a = r1 +
r1d

r1 + r2
.

MA229. Determine the largest real number t such that the two polynomials
x4 + tx2 + 1 and x3 + tx+ 1 have a common root.

Originally from Mathematics Competitions Vol. 25, #2 (2012), Heaven and
Earth, heavenly problem 21.

We received 8 submissions, 7 of which were correct. We present Amy Zhai’s solu-
tion (slightly simplified).

Let f(x) = x4 + tx2 + 1 and g(x) = x3 + tx+ 1. A common root of f(x) and g(x)
is a solution of f(x) = 0 and g(x) = 0. If f(x) = g(x), then

x4 + tx2 + 1 = x3 + tx+ 1

which becomes

x(x− 1)(x2 + t) = 0.

So x = 0, 1,±√−t.
1. When x = 0, f(0) = 1 and g(0) = 1. So, there is no t such that f(x) and
g(x) have common root 0.

2. When x = 1, f(1) = t+ 2 and g(1) = 2 + t. If t = −2, f(1) = g(1) = 0. So,
when t = −2, f(x) and g(x) have common root 1.

3. When x = ±√−t then f(±√−t) = g(±√−t) = 1. So, there is no t such
that x = ±√−t is a common root of f(x) and g(x).

Crux Mathematicorum, Vol. 50(1), January 2024
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Thus, just when t = −2 the two polynomials f(x) and g(x) have a common root
(namely x = 1).

Editor’s Comments. The reason f and g are both 1 in Case 3 is that

f(x) = x2(x2 + t) + 1 and g(x) = x(x2 + t) + 1.

Amy’s approach was most popular. A few other students instead considered

f(x)− xg(x) = 1− x

this is 0 assuming f(x) = g(x) = 0, and instantly yields the candidate x = 1.

MA230. Proposed by Titu Zvonaru, Comăneşti, Romania.
Let ABC be an isosceles triangle with AB = AC and AD, BE, and CF be its
altitudes. A circle of diameter CE intersects the lines BC and CF at M and N ,
respectively. The lineMN intersects the altitude AD at P . Prove thatDP = ME.

There were 3 correct solutions, with one treating the acute triangle case only. We
will present all submitted approaches.

Solution 1, by Ho Long Choi.

When ∠BAC = 90◦, the orthocentre H, A, E, F , N , P all coincide as do M and
D. The result is trivial since DP and ME coincide.

Suppose that ∠BAC < 90◦. Observe that HDCE is concyclic, having opposite
right angles, and ENMC is concyclic by hypothesis. Since

∠PDE = ∠HDE = ∠HCE = ∠NCE = ∠NME = ∠PME,

the quadrilateral PDME is concyclic. Since EC subtends a right angle at M ,

90◦ = ∠PDM = ∠EMD = ∠DPE = ∠PEM.

Therefore PDME is a rectangle and DP = ME.

A

B C
D

EF
H

M

N

P

Copyright © Canadian Mathematical Society, 2024
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Suppose that ∠BAC > 90◦. The rectangles EBDA, EBCF and EMCN are all
concyclic, so that

∠PDE = ∠ADE = ∠ABE = ∠FBE = ∠FCE = ∠NCE = ∠NME = ∠PME.

Therefore PDME is concyclic with all angles right. Hence DP = ME.

A

B C
D

E F

H

M

N

P

Solution 2, by Ralf Roupec.

Using the fact that DP‖ME (with transversals MP and DE), and that ENMC
and HECD are both concyclic, we have that

∠DPM = ∠PME = ∠NME = ∠NCE = ∠HCE = ∠HDE = ∠DEM,

so that PEDM is concyclic. Therefore PEDM is a rectangle and DP = ME.

Note that the case for HECD being concyclic depends on opposite right angles
when ∠BAC < 90◦ and equal right angles subtended by HC when ∠BAC > 90◦.

Solution 3 (for acute triangles), by Bing Jian.

Let ∠BAC < 90◦. Since HDCE and ENMC are concyclic,

∠PHE = ∠DCE = ∠PNE.

Therefore, HNEP is concyclic and so ∠HPE = ∠ENH = 90◦. Since DP is a
common perpendicular to DM and PE, PE‖DM . Also PD‖ME, so that PEDM
is a rectangle and DP = ME.

Crux Mathematicorum, Vol. 50(1), January 2024
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PROBLEM SOLVING
VIGNETTES

No. 30

Shawn Godin

Generalized Ordering

This past fall, the CMS introduced a new member to its growing family of math-
ematics competitions, the Canada Lynx Mathematical Competition (CLMC). The
CLMC is a multiple choice competition, based off the Canadian grade 7 to 11
mathematics curriculum. In this issue we will look at one of the questions from
the inaugural CLMC which was held on September 28, 2023.

Question #5. There are 6 permutations (i.e. rearrangements) of the
word EAT, namely

{AET,ATE,EAT,ETA,TAE,TEA}

There are 24 permutations of the word LYNX. Suppose we write these
24 permutations in alphabetical order, starting with the 1st word (LNXY)
and ending with the 24th word (YXNL).

What is the 11th word we will write down?

(a) NXYL (b) NYXL (c) NYLX (d) XLNY

Following the method of the official solution, we note that there are 4! = 4 ×
3 × 2 × 1 = 24 permutations of the letters in the word LYNX. As such, 1

4 of
all permutations begin with each letter. Hence, in alphabetical order, the first 6
permutations begin with L, the next 6 begin with N, the next 6 begin with X,
and the last 6 begin with Y. Hence the 11th word we write down will be the 5th
word in the list beginning with N. That is, the list: NLXY, NLYX, NXLY, NXYL,
NYLX, NYXL. Consequently, our desired word is NYLX.

In this case, our insight saved us a little bit of work. If we had started listing
things alphabetically, we would have had to list 11 words to get our answer. In
our solution, we did a little calculation and only had to do 5. If the only insight
we used in this problem was the one used in the solution, then the most we would
have had to do is look through 6 words.

However, if the original word contained more letters, the savings are not so great.
For example if we wanted the 65th word in the alphabetical list of permutations of
the word ANGLE. In this case, there would be 5! = 5× 4× 3× 2× 1 = 120 words
in our list. Of the permutations, 1

5 ×120 = 24 begin with each letter. Accordingly,
the first 24 words begin with A and the next 24 begin with E. Therefore, the 65th

Copyright © Canadian Mathematical Society, 2024
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word will be the 17th word in the list of words that begin with G. At this point
we could list the 17 words out and be done with it.

However, let’s go back to the example in the problem and draw a tree diagram.

AET

ATE

EAT

ETA

TAE

TEA

T

E

T

A

E

A

E

T

A

T

A

E

E

A

T

Notice that if we choose T to be the first letter, then the permutations that start
with T are contained in a smaller subtree, shown in red in the diagram. We can
use this idea to solve these types of problems recursively.

Returning to our problem, note that the 24 words that begin with G are just a G
followed by a four letter word that is the permutation of the letters ANLE, which
is equivalent to the original problem (i.e. we are focusing on a subtree). Of the 24
“subwords”, 6 begin with each of the four letters. So the first 6 begin with A, the
next 6 begin with E and hence the 17th word is the 5th that begins with L.

We could count off 5 at this point, but let’s continue the pattern. There are 6
words that begin with GL and these are just the permutations of ANE, 2 starting
with each of the three letters. Hence we get the next letter must be N and we are
after the 1st of two words made up of A and E, which is AE. Therefore the 65th
word in the list is GLNAE.

If we think of this in general we see that for a word made up of n unique letters,

there are n! permutations of the letters. Of the permutations,
n!

n
= (n− 1)! begin

with each letter. Our job, at each step, is to decide which letter goes in the “next”
position, starting with the first. In the original problem, we had 24 permutations,
we wanted the 11th and 6 began with each letter. It might seem that some division
by 6 is appropriate. However, let’s take a closer look at all the words, their place
on the list, and the ceiling function applied to what we get when we divide the
place on the list by 6.

Recall that the ceiling function dxe returns the smallest integer greater than or
equal to x. Hence

d1.7e = 2, d−4.373e = −4, d13e = 13.

We will see that dn ÷ 6e returns which letter, in alphabetical order, is the first
letter in the nth word.

Crux Mathematicorum, Vol. 50(1), January 2024
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Word Order (n) dn÷ 6e Word Order (n) dn÷ 6e
LNXY 1 1 XLNY 13 3
LNYX 2 1 XLYN 14 3
LXNY 3 1 XNLY 15 3
LXYN 4 1 XNYL 16 3
LYNX 5 1 XYLN 17 3
LYXN 6 1 XYNL 18 3
NLXY 7 2 YLNX 19 4
NLYX 8 2 YLXN 20 4
NXLY 9 2 YNLX 21 4
NXYL 10 2 YNXL 22 4
NYLX 11 2 YXLN 23 4
NYXL 12 2 YXNL 24 4

For the original problem there were 4 letters. So for each letter there is 3! = 6
words starting with that letter. Since°

11

3!

§
= 2

then the 11th word starts with the 2nd letter, in alphabetical order, N. We remove
the words that start with letters before this of which there are 3! = 6. As

11− 6× (2− 1) = 5,

we are left to find the 5th word in the alphabetically arranged list of permutations
of LXY. There are 2! = 2 words starting with each of the three remaining letters.
Since °

5

2!

§
= 3,

this tells us that the second letter is the 3rd letter that is left (alphabetically),
that is, Y. Completing the process, 5 − 2 × (3 − 1) = 1, so the word we are after
is the 1st word beginning with NY, which is NYLX, as we discovered before.

We can use the same process for ANGLE, shown below in a more compact form,
Note that ` represents the number of letters “remaining”.

Letters Position (n)
⌈

n
(`−1)!

⌉
Letter

A, E, G, L, N 65
⌈

65
(5−1)!

⌉
= 3 G

A, E, L, N 65− (3− 1)× (5− 1)! = 17
⌈

17
(4−1)!

⌉
= 3 L

A, E, N 17− (3− 1)× (4− 1)! = 5
⌈

5
(3−1)!

⌉
= 3 N

A, E 5− (3− 1)× (3− 1)! = 1
⌈

1
(2−1)!

⌉
= 1 A

E 1− (1− 1)× (2− 1)! = 1
⌈

1
(1−1)!

⌉
= 1 E

Copyright © Canadian Mathematical Society, 2024
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The reader may enjoy exploring this idea further with the following problems.

1. Determine the 357th word in the alphabetical list of permutations of the
word RADIUS.

2. Reverse the process to determine the position in the list from the permuta-
tion. For example, at what position in the alphabetical list of permutations
of the word ANGLE is the word GLEAN?

3. Things become more interesting with repeated letters. Determine the 100th
word in the alphabetical list of permutations of the word CIRCLE.

Readers may also enjoy exploring other problems from the CLMC, or any of the
other CMS competitions. These can be found on the CMS competitions web page
at cms.math.ca/competitions.

Crux Mathematicorum, Vol. 50(1), January 2024
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OLYMPIAD CORNER
No. 419

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by March 15, 2024.

OC661. Point N is the midpoint of side AD of a convex quadrilateral ABCD,
and point M on side AB is such that CM ⊥ BD. Prove that if BM > MA, then
2BC +AD > 2CN .

OC662. Let a1, . . . , ak be distinct positive integers such that the difference
between the largest and smallest of them is less than 1000. What is the largest
k for which it is possible that all quadratic equations aix

2 + 2ai+1x + ai+2 = 0,
where 1 ≤ i ≤ k − 2, have no real roots?

OC663. There are 100 cities in the Far Far Away Kingdom, and every two
cities are connected by no more than one road. One day the king ordered the
introduction of one-way traffic on every road, and at the same time every road
was painted white or black. The Minister of Transport proudly announced that
after carrying out the order, one can get from any city to any other along roads
alternating their colors, and so that the first road along the way will be white.
What is the smallest number of roads there could be in this country? When
getting from city to city, you can pass through intermediate cities any number of
times.

OC664. Find all functions f : R → R that have a continuous second
derivative and for which the equality f(7x+ 1) = 49f(x) holds for all x ∈ R.

OC665. Let A, B and C be n× n matrices with complex entries satisfying

A2 = B2 = C2 and B3 = ABC + 2I.

Prove that A6 = I.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mars 2024.

OC661. Le point N est le milieu du côté AD d’un quadrilatère convexe
ABCD, et le point M du côté AB est tel que CM ⊥ BD. Montrez que si
BM > MA, alors 2BC +AD > 2CN .

OC662. Soit a1, . . . , ak des entiers positifs distincts tels que la différence
entre le plus grand et le plus petit d’entre eux est inférieure á 1000. Quel est
le plus grand k pour lequel il est possible que toutes les équations quadratiques
aix

2 + 2ai+1x+ ai+2 = 0, où 1 ≤ i ≤ k − 2, n’aient pas de racines reéles?

OC663. Il y a 100 villes dans le Royaume lointain, et toutes les paires de villes
sont reliées entre elles par au plus une route. Un jour, le roi a ordonné la mise en
place d’une circulation á sens unique sur toutes les routes et, du même coup, toutes
les routes ont été peintes en blanc ou en noir. Le ministre des transports annonce
fièrement qu’après l’exécution de l’ordre, on peut aller de n’importe quelle ville á
n’importe quelle autre par des routes alternant leurs couleurs, et que la première
route du chemin serait blanche. Quel est le plus petit nombre de routes qu’il puisse
y avoir dans ce pays ?

Lorsque l’on se rend d’une ville á l’autre, on peut transiter par des villes in-
termédiaires autant de fois qu’on le souhaite.

OC664. Trouvez toutes les fonctions f : R→ R qui ont une dérivée seconde
continue et pour lesquelles l’égalité f(7x+1) = 49f(x) est vérifiée pour tout x ∈ R.

OC665. Soient A, B et C des matrices n × n á coefficients complexes satis-
faisant aux conditions suivantes

A2 = B2 = C2 et B3 = ABC + 2I.

Montrez que A6 = I.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2023: 49(6), p. 306–307.

OC636. Determine all the pairs (p, n) of a prime number p and a positive
integer n for which np+1

pn+1 is an integer.

Originally Problem 3 from the 2012 Asian Pacific Mathematics Olympiad.

We received 9 submissions, 6 of which were correct and complete. We present the
solution by Oliver Geupel, Brühl, NRW, Germany.

Such pairs are
(2, 4) and (p, p) for every prime p.

We show that there are no more solutions. In the following, we assume that (p, n)
is a solution to the problem.

For p = 2, we have n /∈ {1, 3} by inspection, and a straightforward induction shows
that n2 < 2n when n ≥ 5. Therefore we must have n < 5, which results in two
valid values n = 2 and n = 4. This completes the case p = 2.

Next, we suppose that p is odd. Since pn + 1 is even, so is np + 1, whence n is
odd. We have

pn + 1 = (p+ 1)
n−1∑
k=0

(−p)k.

Hence p+ 1 | np + 1, so that

np ≡ −1 (mod p+ 1)

and
n2p ≡ 1 (mod p+ 1) . (1)

As a consequence, the numbers n and p + 1 are coprime. It follows by Euler’s
theorem that

nϕ(p+1) ≡ 1 (mod p+ 1) . (2)

Let d be the order of n (mod p+ 1), that is, the smallest positive integer x such
that nx ≡ 1 (mod p+ 1). Then d is a common divisor of 2p and ϕ(p + 1) by (1)
and (2). Since p+ 1 is nonprime, it holds ϕ(p+ 1) < p; thus d ≤ 2.

If d = 1, then we would have

−1 ≡ np ≡ 1 (mod p+ 1) ,

which is impossible.
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Thus d = 2. With the notation p = 2q + 1, we obtain

n ≡
(
n2
)q · n ≡ np ≡ −1 (mod p+ 1) . (3)

Note that n = 1 is impossible. Hence n ≥ 3. Since pn ≤ np, then n log p ≤ p log n.
Thus (log p)/p ≤ (log n)/n. The function f(x) = (log x)/x is decreasing for x > e,
because its derivative f ′(x) = (1 − log x)/x2 is negative. We deduce that n ≤ p.
By (3), we finally conclude that n = p. The proof is complete.

Editor’s Comments. We thank the readers for pointing out that this question has
previously appeared as OC143 in Crux 39 (7). The current featured solution is
an updated solution by Oliver Geupel for OC143.

OC637. For any positive integer x, we set

g(x) = the largest odd divisor of x,

f(x) =

®
x
2 + x

g(x) if x is even;

2
x+1
2 if x is odd.

Consider the sequence (xn)n∈N defined by x1 = 1, xn+1 = f(xn). Show that
the integer 2018 appears in this sequence, determine the last integer n such that
xn = 2018, and determine whether n with the property xn = 2018 is unique.

Originally Problem 3 from the 2018 Pan African Mathematics Olympiad.

We received 5 submissions, all of which were correct and complete. We present
first an intuitive solution followed by a technical solution.

Solution 1, by Theo Koupelis.

Let xi = 2k + 1 be an odd, positive integer, where i > 0 and k ≥ 0 are integers.
Then xi+1 = 2k+1 and thus g(xi+1) = 1 and xi+2 = 2k + 2k+1 = 3 · 2k.
If k > 0, repeating the process we get g(xi+2) = 3 and xi+3 = 3·2k−1+2k = 5·2k−1.
If k > 1, then repeating the process we get g(xi+3) = 5 and xi+4 = 5 · 2k−2 +
2k−1 = 7 ·2k−2. Continuing the process until the exponent of the power of 2 in the
expression for x is zero, we get xi+k+2 = [2(k + 1) + 1] · 20 = 2(k + 1) + 1.

From the above, we see that every term in the sequence is unique; starting with an
odd integer (2k+1), the next term is a power of 2, namely 1 ·2k+1, and then every
other term in the sequence is a product of an increasing odd integer (3, 5, 7, . . .)
with a power of 2 whose exponent decreases linearly, until we get a term that is
the next odd integer in the sequence, 2(k+1)+1. Therefore, there is no term that
repeats, and there are k + 1 terms between two consecutive odd integers in the
sequence. Thus, x1 = 1, x3 = 3, x6 = 5, x10 = 7, x15 = 9, x21 = 11, . . . with the
general term given by xn(n+1)/2 = 2n− 1, with n a positive integer.

We note that 2018 = 2 · 1009, and thus, for n = 505 we get x127765 = 1009, and
x127765+505 = x128270 = 2 · 1009 = 2018.
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Solution 2, by UCLan Problem Solving Group.

We claim that for any positive integer n and any k ∈ {1, 2, . . . , n} we have

x(n2)+k
= (2k − 1)2n−k .

Above
(
n
2

)
= n(n − 1)/2 and in the case n = 1,

(
n
2

)
= 0. We prove our claim by

induction on n and for a fixed n by induction on k.

First, we establish the base case for induction on n. For n = 1 there is only one
possible value for k, k = 1. In this case the claim is true: x(n2)+k

= x1 = 1 =

(2− 1)21−1.

Assume the claim is true for n and any k = 1, 2, . . . , n. In particular,

xn(n+1)
2

= x(n2)+n
= (2n− 1)2n−n = 2n− 1 .

Then we can prove our claim for n+ 1 and k = 1:

x(n+1
2 )+1 = f(x(n+1

2 )) = f(xn(n+1)
2

) = f(2n− 1) = 2
(2n−1)+1

2 = 2n .

The above establishes the base case for induction on k: n is fixed and k = 1.
Assume n is fixed and that the claim is true for some 1 ≤ k < n. Call x = x(n2)+k

.

Consequently,
x = (2k − 1)2n−k ,

and x is even. The largest odd divisor of (2k−1)2n−k is 2k−1 and g(x) = 2k−1.
Therefore,

x(n2)+k+1 = f(x) =
x

2
+

x

g(x)
= (2k − 1)2n−k−1 + 2n−k

= (2k + 1)2n−k−1 = (2(k + 1)− 1)2n−(k+1) .

So the claim is true for k + 1. Our claim is established for any positive integer n
and any k ∈ {1, 2, . . . , n}.
Now notice that there is a unique way to write a positive integer m in the form(
n
2

)
+ k with k ∈ {1, 2, . . . , n}. We have xm = x(n2)+k

= 2018 if and only if

(2k − 1)2n−k = 2 · 1009 if and only if k = 505, n = 506. So 2018 appears in the
sequence (xm) exactly once when m =

(
506
2

)
+ 505 = 254 · 505 = 128270.

OC638. Find all the real numbers x such that

1

[x]
+

1

[2x]
= {x}+

1

3

where [x] denotes the integer part of x and {x} = x− [x]. For example [2.5] = 2,
{2.5} = 0.5 and [−1.7] = −2, {−1.7} = 0.3.

Originally Problem 4 from the 2017 Pan African Mathematics Olympiad.
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We received 14 submissions, 13 of which were correct and complete. We present
the solution by Catherine Jian.

We notice that x must be positive since {x}+ 1
3 is always positive. Also, we claim

that x cannot be an integer. Otherwise, [x] = x, {x} = 0, and

1

x
+

1

2x
=

1

3
=⇒ 3

2x
=

1

3
=⇒ x = 4.5.

The last fact is a contradiction because 4.5 is not an integer.

Next, we know that 0 < {x} < 1 and can do the following casework.

Case 1: [2x] = 2[x], 0 < {x} < 0.5, hence

1

[x]
+

1

2[x]
= {x}+

1

3
=⇒ {x} =

3

2[x]
− 1

3
=

9− 2[x]

6[x]
.

Now, we have

0 <
9− 2[x]

6[x]
< 0.5 =⇒ 0 < 9− 2[x] < 3[x] =⇒ 9

5
< [x] <

9

2
.

Since [x] is an integer, [x] can only be 2, 3, or 4.

Now, we can use these values of [x] to find their corresponding values of {x}.

[x] = 2 =⇒ {x} =
5

12
=⇒ x =

29

12
,

[x] = 3 =⇒ {x} =
1

6
=⇒ x =

19

6
,

[x] = 4 =⇒ {x} =
1

24
=⇒ x =

97

24
.

Case 2: [2x] = 2[x] + 1, 0.5 ≤ {x} < 1, so

1

[x]
+

1

2[x] + 1
= {x}+

1

3

=⇒ 3[x] + 1

2[x]2 + [x]
= {x}+

1

3

=⇒ {x} =
3[x] + 1

2[x]2 + [x]
− 1

3
.

We get the inequality

1

2
≤ 3[x] + 1

2[x]2 + [x]
− 1

3
< 1

=⇒ 5

6
≤ 3[x] + 1

2[x]2 + [x]
<

4

3

=⇒ 5(2[x]2 + [x])

6
≤ 3[x] + 1 <

4(2[x]2 + [x])

3

=⇒ 10[x]2 + 5[x] ≤ 18[x] + 6 < 16[x]2 + 8[x].
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We solve the first inequality 10[x]2+5[x] ≤ 18[x]+6. Using the quadratic formula,
we get

13−
√

409

20
≤ [x] ≤ 13 +

√
409

20
< 2.

Since [x] is an integer, [x] can only be 1. However, before solving the other half of
the inequality, let us plug in [x] = 1 into the equation for {x},

{x} =
4

3
− 1

3
= 1.

This is a contradiction as {x} was assumed to be in [0.5, 1). Therefore, this case
leads to no solutions.

In summary, the only solutions for x are
29

12
,

19

6
, and

97

24
.

OC639. For the curve sin(x) + sin(y) = 1 lying in the first quadrant, find the
constant α such that

lim
x→0

xα
d2y

dx2
.

exists and is nonzero.

Originally Problem 7 from the 2011 Stanford Math Tournament.

We received 8 submissions, 7 of which were correct and complete. We present the
solution by Oliver Geupel, Brühl, NRW, Germany.

We show that α = 3/2.

For real functions u(x) and v(x) we write u(x) ∼ v(x) if there is a function w(x)
such that u(x) = v(x)(1 + w(x)) and limx→0 w(x) = 0. It is well-known that
sinx ∼ x.

The equation of the part of the curve that meets x = 0 rewrites as

y =

®
2kπ + arcsin(1− sinx)

(2k + 1)π − arcsin(1− sinx)

with k = 0, 1, 2, . . . .

Let

f(x) = 2kπ + arcsin(1− sinx)

for any k ∈ {0, 1, 2, . . .}. Then

df(x)

dx
= − cosx√

1− (1− sinx)2
= − cosx√

2 sinx− sin2 x
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and

d2f(x)

dx2
=

sinx ·
√

2 sinx− sin2 x+ cosx · 2 cos x−2 sin x cos x

2
√

2 sin x−sin2 x

2 sinx− sin2 x

=
sinx

(
2 sinx− sin2 x

)
+
(
1− sin2 x

)
(1− sinx)(

2 sinx− sin2 x
)3/2

=
1− sinx+ sin2 x

sin3/2 x(2− sinx)3/2

∼ 1

(2 sinx)3/2
∼ 1

(2x)3/2
.

Therefore

lim
x→0

x3/2
d2f(x)

dx2
=

1

23/2
.

Similarly, if
g(x) = (2k + 1)π − arcsin(1− sinx),

with any k ∈ {0, 1, 2, . . .}, then

lim
x→∞

x3/2
d2g(x)

dx2
= − 1

23/2
.

Hence the result.

OC640. An equiangular hexagon has side lengths 1, 1, a, 1, 1, a in that order.
Given that there exists a circle that intersects the hexagon at 12 distinct points,
we have M < a < N for some real numbers M and N . Determine the minimum
possible value of the ratio N

M .

Originally Problem 4 (proposed by Yuan Yao) from the November 2017, HMMT
Harvard MIT.

We received 3 submissions, 2 of which were correct and complete. We present the
solution by Theo Koupelis.
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All the angles of the hexagon are 60◦, and CD ‖ AF, BC ‖ FE, and AB ‖ DE.

Let O(0, 0) be the origin and the vertices be A = (−a2 ,−
√
3
2 ), B = (−a+1

2 , 0),

C = (−a2 ,
√
3
2 ), D = (a2 ,

√
3
2 ), E = (a+1

2 , 0), and F = (a2 ,−
√
3
2 ). Let K(x0, y0) be

the center of the circle that intersects the hexagon at 12 distinct points.

Without loss of generality, let x0, y0 ≥ 0. By construction, the circle (K) must
intersect each side of the hexagon at two distinct points. In order for (K) to
intersect the sides CD and AF, its diameter must be greater than the distance
between these two sides, and thus 2R >

√
3. Similarly, in order for (K) to intersect

the sides of length 1, its diameter must be less than the distance BE, and thus
2R < a+ 1. Therefore, a >

√
3− 1.

Finally, in order for (K) to intersect the segment BC, the projection K ′ of K on
BC must be between points B and C. But the equations of the lines BC and KK ′

are y
BC

=
√

3x+
√
3
2 (a+ 1), and y

KK′ = − 1√
3
x+ y0 + x0√

3
, respectively. Therefore,

x
K′ =

x0
4

+

√
3y0
4
− 3

8
(a+ 1);

but −a+1
2 < x

K′ < −a2 , and thus

−a+ 1

2
< x0 +

√
3y0 <

3− a
2

.

However, x0, y0 > 0, and thus a < 3. For every value a ∈ (
√

3 − 1, 3) there is a
circle that intersects the hexagon at 12 distinct points.

When a =
√

3 − 1 + ε, where ε is a small, positive real number, the circle with

center K ≡ O and radius R =
√
3
2 + ε′ satisfies the requirement. Indeed, this

circle clearly intersects the sides CD and AF at two points. Also, in this case

K ′ = (− 3
8 (a + 1),

√
3
8 (a + 1)) and thus KK ′ =

√
3
4 (a + 1) = 3

4 +
√
3
4 ε < R.

Therefore, this circle also intersects the sides of length 1 at two points.

On the other hand, when a = 3 − ε, a circle with center K ≡ O and radius

R =
√
3
4 (a + 1) + ε′ satisfies the requirement. Indeed, as shown above, we have

R > KK ′, and thus the circle intersects the sides BC,DE,EF, and AB at two

points. Also, R >
√
3
2 , and thus the circle also intersects the sides CD and AF at

two points.

Therefore, we have M ≤
√

3− 1, and N ≥ 3, and thus N
M ≥ 3

2 · (
√

3 + 1).
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Exploring Mathematics Through
the Game of Cop and Robber

Kseniya Garaschuk and Gary MacGillivray+

1 Introduction

Cop and Robber is a pursuit-evasion game played on a graph. There are two
players: the Cop and the Robber. To start play, the Cop chooses a vertex of the
graph to occupy (Figure 1(a)), and then the Robber chooses a vertex to occupy
(Figure 1(b)). The two sides then alternate making moves (Cop, then Robber, then
Cop, and so on). A move consists of either remaining at the currently occupied
vertex, or travelling along an edge to an adjacent vertex (Figure 1(c) and (d)).
The Cop’s goal is to catch the Robber, that is, to occupy the same vertex as the
Robber. If this ever happens, the Cop wins the game (no matter whose turn it is
when it happens). The Robber wins the game if she can avoid ever being caught.
The game is played with perfect information, which means that each player knows
the graph, position of their opposite, and all options available.

Figure 1: Illustrating the beginning of a game

+supported by NSERC
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Looking at the game shown in Figure 1, after the Cop has chosen her starting
vertex, there is only one vertex that the Robber can choose to avoid being caught
on the Cop’s next move. She chooses that vertex in Figure 1(b). After the Cop
travels along an edge to the position shown in Figure 1(c), the Robber has no
option that will allow her to avoid capture on the Cop’s next move. Since the
Cop moves first, the strategy described in this paragraph guarantees that she can
catch the Robber in at most three Cop’s moves.

Figure 2: A game that the Robber wins

The start of another game is illustrated in Figure 2. In this one, the Robber seems
to always have a move that allows her to avoid being adjacent to (on a vertex
joined to the one occupied by) the Cop. Hence, it appears that she can avoid ever
being caught. But we can’t play the game forever, and just because the Cop has
not caught the Robber by the time the players are tired does not mean that the
Cop can never catch the Robber.

It is clear when the Cop has won the game because she is on the same vertex as
the Robber. But how can situations in which the Robber wins be identified?

Cop and Robber was introduced, independently, by Quilliot in 1978 [14], and in a
paper of Nowakowski and Winkler that was published in 1983 [12]. Since that time,
there have been many papers and theses written on this game, and its variants
(see [3] for a list that is current as of 2011).

Very little graph theory is needed to describe the game and do an informal analysis.
It suffices to know that a graph consists of a finite, non-empty, collection of objects
called vertices, which are usually represented by dots in the plane, and a collection
of pairs of vertices called edges, which are usually represented by line segments or
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curves joining the vertices in each pair.

Figure 3: Do you want to be the Cop or the Robber?

Each different graph gives rise to a different version of the game. The main question
to be answered is whether the Cop can catch the Robber when the game is played
on the given graph. That is, is the graph cop-win or is it robber-win? One or the
other is always true because either the Cop has a winning strategy or she doesn’t.
There turns out to be a straightforward way to decide which player has a winning
strategy [12, 14], but if someone does not know a theorem that characterizes cop-
win graphs, the question can be framed differently by displaying a moderately
complicated graph like the one in Figure 3 and asking one of the players which
role she prefers: “Do you want to be the Cop or the Robber?” Other questions can
be asked that bring to light some more subtle aspects of the analysis of this game.
Three such questions are listed below:

• Is it possible to describe the graphs on which the Cop has a winning strategy?
(From above, the answer to this question is yes.)

• Suppose we can determine that the Cop can always catch the Robber. Can
the winning strategy, ie the strategy that guarantees the Cop will win, be
described?

• Given that we can’t play forever, how long must we play the game before it is
legitimate to conclude that the Robber will never be caught? A different way
to phrase this question is to ask if there is an upper bound on the number
of moves in a winning strategy.

These three questions are interrelated. Ways of approaching the first question will
lead to ways of approaching the second and third questions.
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2 A first analysis of the game

One analysis of the game is recursive. Think about the position of the Cop and
Robber, on the Robber’s move, just before the Cop catches her. In order for
the Robber to be caught on the next Cop’s move, every possible vertex that the
Robber can occupy must be adjacent to the vertex currently occupied by the Cop.
A vertex r, such as the one occupied by the Robber in the situation just described,
is called a corner. More precisely, a vertex r is a corner if there is another vertex
c adjacent to r and all the other vertices to which r is adjacent (and maybe some
more vertices too). The name is intended to be descriptive of the situation: if the
Robber is at r and the Cop is at c then the Robber is cornered in the sense that
any available move leads to the Cop being able to win on her next move. The
vertex that the Robber occupies in Figure 1(c) is a corner. The extreme left-hand
vertex is also a corner, but no other vertex of this graph is a corner. No vertex of
the graph in Figure 2 is a corner.

If a graph G has at least two vertices and is cop-win, then it must have a corner,
otherwise from any position the Robber has a move that makes it possible to avoid
being caught on the next Cop’s move.

Exercise 1. Suppose that x is a corner of G. Prove that G is cop-win if and
only if G − x (the graph obtained by deleting x and every edge that involves x)
is cop-win. Hint: If G − x isn’t cop-win, then when playing the game on G why
would the Robber ever move to x? Also, if G− x is cop-win, then what describes
the situation when the Cop is about to catch the Robber on that graph?

The if and only if condition gives a straightforward way to determine if a given
graph G is cop-win. If G has at least two vertices and has a corner x, delete x
and apply the same reasoning to G− x. If this procedure eventually reduces G to
a single vertex, then G is cop-win. If it doesn’t, then G is robber-win.

Exercise 2. Prove the assertion in the above paragraph. That is, show that G is
cop-win if and only if it can be reduced to a single vertex by deleting corners.

We now have a way of proving that a graph is cop-win: reduce it to a single vertex
by iteratively deleting corners. We also have a way of proving a graph is not cop-
win: show that after some number (which may be zero) of corners are deleted, a
graph with at least two vertices and no corner remains. Since a cop-win graph
must have a corner, a graph with no corner must be robber-win. By the if and
only if condition, a cop-win graph can not be reduced to a robber-win graph by
repeatedly deleting corners, so the original graph G must be robber-win.

The graphs in Figure 1 and Figure 3 can be reduced to a single vertex by iteratively
deleting corners, hence they are both cop-win. The graph in Figure 2 has no corner
and therefore can not be so reduced. It is therefore robber-win.

There is a winning strategy for the Cop subtly buried in the above analysis. Find-
ing this strategy is left as an exercise in thinking recursively.
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3 A second analysis of the game

A different analysis of the game reveals a winning strategy for the Cop (if one
exists) and an upper bound on the number of moves needed for the Cop to catch
the Robber. The analysis arises from looking at the game beginning with what
appears to be a truism: the Cop can catch the Robber if, no matter to which vertex
the Robber moves, the Cop can relocate so that fewer moves than before are needed
to catch her.

This obvious fact leads to the recognition that, after the Cop has chosen her
starting vertex, the game is a sequence of positions (c, r), where c is the vertex
occupied by the Cop and r is the vertex occupied by the Robber, when it is the
Robber’s turn to move. The Robber’s first move involves choosing among all such
positions given the Cop’s initial location. It also leads to the recognition that the
number of further Cop’s moves needed to win, if possible, depends only on the
current position (this assumes optimal play, that is each player always makes her
best possible move).

If the Cop and Robber are located at the same vertex, then the game is over, so
no more Cop’s moves are needed for the Cop to catch the Robber. If the Robber’s
vertex r is a corner and the Cop’s vertex c is adjacent to r and every other vertex
besides itself adjacent to r, then one more Cop’s move is needed for the Cop to
catch the Robber (assuming the robber plays to make the game go on as long as
possible). This suggests the idea of assigning a pair (c, r) the integer k if the Cop,
located at c, can catch the Robber, located at r, in at most k more Cop’s moves.
We will analyse the following way of assigning non-negative integers to ordered
pairs of vertices.

• For each vertex w, assign the pair (w,w) the integer 0.

• If possible, assign the unnumbered pair (c, r) the smallest integer k such
that, for every vertex r1 which either equals r or is adjacent to r, there is a
vertex c1 which either equals c or is adjacent to c, such that the pair (c1, r1)
is numbered less than k.

Figure 4: Graphs used to illustrate numbering positions
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The numbering of positions (pairs) becomes less cumbersome to understand once
some notation is introduced. We can use an n × n array whose columns and
rows are indexed by the vertices of the graph, and in which the entry in column
c and row r is either the number assigned to the pair (c, r) or “−” if the pair
is unnumbered. (While it is tempting to read the first coordinate as the row
index, we have deliberately chosen the same order of coordinates as is used for the
Cartesian plane.) The condition “For each vertex w, assign the pair (w,w) the
integer zero” says that the entries on the main diagonal of the array (positions
(x1, x1), (x2, x2), . . . , (n, n)) are all 0. For the graph in Figure 4(a), we have n = 6,
and when this is done the array is:

x1 0 − − − − −
x2 − 0 − − − −
x3 − − 0 − − −
x4 − − − 0 − −
x5 − − − − 0 −
x6 − − − − − 0
r/c x1 x2 x3 x4 x5 x6

We will do examples before moving on to the general case.

Suppose we want to see if the pair (x3, x2) can be numbered 1. By the condition,
this happens if the “smallest integer such that, for every vertex r1 which either
equals x2 or is adjacent to x2, there is a vertex c1 which either equals x3 or is
adjacent to x3, such that the pair (c1, r1) is numbered less than 1”. Referring to
Figure 4(a), the possibilities for r1 are x1, x2, x3 and x6. We need to consider
each of these in turn. Let’s look at x1 first. The first question to be answered is
whether, in the row x1 there is a pair numbered less than 1 in the column of some
vertex equal or adjacent to x3. And there is: (x1, x1) is numbered zero. Similarly,
in each of rows x2, x3 and x6 there is a pair numbered 0 in the column of a vertex
adjacent to x3. The pairs are (x2, x2), (x3, x3) and (x6, x6), respectively. Before
assigning (x3, x2) the number 1 we need to check that 1 is the smallest number that
it can be assigned. This is true because, by definition of the numbering procedure,
the pair can not be assigned 0. We can therefore put a 1 in column x3 and row
x2, and the array becomes:

x1 0 − − − − −
x2 − 0 1 − − −
x3 − − 0 − − −
x4 − − − 0 − −
x5 − − − − 0 −
x6 − − − − − 0
r/c x1 x2 x3 x4 x5 x6

Exercise 3. Show that pair (x3, x1) cannot be numbered 1.

Exercise 4. Show that the only other pair that can be numbered 1 is (x4, x5).
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After as many vertices as possible can be numbered 0 or 1, the array is:

x1 0 − − − − −
x2 − 0 1 − − −
x3 − 0 0 − − −
x4 − − − 0 − −
x5 − − − 1 0 −
x6 − − − − − 0
r/c x1 x2 x3 x4 x5 x6

Next we consider all pairs one at a time to see if any of them can be numbered
2. The order in which they are considered does not matter because whether a
pair can be numbered 2 depends only on pairs that have been numbered 0 or 1.
Once all unnumbered pairs have been considered for numbering with 2 we move
on to trying to number pairs 3, then 4, and so on until, finally, no more pairs
can be numbered. By proceeding in this way, the question of using the smallest
possible number for each pair is handled automatically. If we have proceeded
systematically, then by the time we try to number a pair with k, we know it can
not be numbered less than k and therefore k is the smallest number that can be
assigned.

Exercise 5. Assign the number 2 to as many pairs as possible. (Hint: there are
8 such pairs.)

The array has 62 total entries. In general, if G has n vertices the array will have n2

entries. Proceeding systematically, for each integer k we either fail to number any
pairs or else number a pair with k. Thus the numbering process eventually stops.
This can be because the array is filled in (all pairs are numbered) or because no
more unnumbered pairs can be assigned a number. However, it is not necessary
to number as many vertices as possible in order to determine that the Cop can
win the game. Suppose there is a vertex s such that every entry in column s is
a number. If the Cop is at the vertex s then, according to the meaning of the
numbers (and as we will argue below) no matter what vertex the Robber is at,
she will get caught. That is, we will show that a graph is cop-win if and only if
the numbering procedure eventually results in a column with no “−”. In order to
determine that a graph is robber-win, it is necessary to verify that this condition
never holds. The only way to do that is to continue numbering vertices until no
more can be numbered. The completed array with a “−” in each column is then
a certificate that the graph is robber-win.

Suppose the Cop has started the game by choosing the vertex s, and the Robber
has responded by choosing vertex r0. If the pair (s, r0) is numbered, then the
Cop can win. The strategy is: Move to a vertex c0 for which is (c0, r0) numbered
less than (s, r0). Then after each subsequent Robber’s move, move to a vertex so
that the new position is numbered less than the position the game was in before
the Robber moved. The first part is possible by definition of the numbering: take
y1 = y0 in the second bullet point. The second part is possible by the definition of
the numbering. For any possible Robber’s move there is a Cop’s move to a position
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which is numbered lower still. Suppose the position (c0, r0) is numbered k and it
is the Robber’s turn to move. By definition of the numbering, for any vertex r1
to which the Robber can move, there is a vertex c1 to which the Cop can move
so that the position (c1, r1) is numbered less than k (therefore, at most k − 1).
In turn, if (c1, r1) is not numbered zero then, by definition of the numbering, for
every possible Robber’s move from r1 to a vertex r2 there is Cop’s move from c1 to
a vertex c2 so that the position (c2, r2) is numbered less than (c1, r1). Continuing
in this way, the sequence of positions that arise as the game is played optimally
gives rise to a corresponding sequence of positive integers in which the largest
term is k, and each subsequent term is smaller than its immediate predecessor.
The sequence of positions therefore has as most k+ 1 terms, and must eventually
terminate in a position numbered 0. That is, the Cop catches the Robber in at
most k moves.

In order for the Cop to win the game, she must be able to choose an initial vertex
from which she can catch the Robber (in some number of moves) no matter which
initial vertex the robber chooses.

Exercise 6. Argue that the Cop can win if and only if she is able to choose a
start vertex s so that the pair (s, r0) is numbered for all possible choices of r0.
Hint: Suppose the current position is indicated in the array with a −. Use the
fact that this pair could not be numbered to argue that the Robber has a move to
a vertex so that, no matter to which vertex the Cop moves, the resulting position
is also unnumbered. Why does this mean the Robber can play so as to never be
caught?

In the array, a vertex as in Exercise 6 is one for which every entry in its column is
a number (none are “−”), so it is easy to see if such a vertex exists.

Suppose the game is played on the graph in Figure 4(a), and that the Cop chooses
x3 on her first move. Since each entry in column x3 equals 0, 1 or 2, the Cop can
catch the Robber in at most 2 more moves. This agrees with our discussion of the
play in Figure 1. (The vertex x4 would also work as a start vertex.)

For the graph in Figure 4(b) the only pairs that can be numbered are (v1, v1),
(v2, v2), . . ., (v8, v8). By the discussion above, this graph is robber-win. This
agrees with our analysis of the game using the method of iteratively deleting
corners discussed in the previous section.

The analysis in this section can be used to calculate the maximum length of the
game on any cop-win graph assuming optimal play: it is 1 (for the initial move to
start the game) plus the smallest integer k such that there is a vertex s for which
all entries in column s are at most k. Stated differently, if the numbering has been
done systematically by assigning all possible zeros, then all possible ones, and so
on, then the integer k is the number that is being assigned when the first column
without a “−” appears. An upper bound on this maximum in a cop-win graph
with n vertices follows from the numbering procedure. There are n pairs which
are assigned the number 0. If all pairs are eventually numbered, then each of the
integers 1, 2, . . . , t, where t is the maximum number assigned to a pair, is assigned
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to at least one pair. Since each of n2 − n pairs which are numbered greater than
zero could be assigned a different number, it follows that no pair can be numbered
greater than n2−n. Hence, if the Cop can catch the Robber, then she can do so in
at most n2−n Cop’s moves, and assuming optimal play, if the Robber has avoided
capture for n2 − n+ 1 Cop’s moves, then she will never be caught.

The bound n2−n is not the best possible. That is, there is no graph with n vertices
in which n2−n Cop’s moves are required for the Cop to catch the Robber. It can
be improved to n2 − n − (n − 1) = n2 − 2n + 1 by refining the above argument
slightly. By contrast, using the first analysis of the game, Nancy Clarke has proved
that n − 1 Cop’s moves suffice [5]. Is this bound is best possible? (It turns out
not to be except for small graphs – see Section 8.6 of [3].)

4 Concluding remarks

An informal analysis of the game Cop and Robber has been used to talk about
proofs, characterizations, recursive thinking (induction), quantifiers, relations, in-
equalities (bounds) and algorithms. Let us now mention some generalizations of
the game and several more unsolved problems.

The game can be extended to the situation where there is more than one Cop. In
this situation the proper name for the game is Cops and Robber. It is described
similarly. There are two sides: a group of k > 0 Cops and a single Robber. To
start the game, a vertex is chosen for each Cop, and then the Robber chooses a
vertex. The two sides move alternately as before. A move for the Cops consists
of each Cop either staying at her current vertex or sliding along an edge to an
adjacent vertex. The Cops win the game if any one of them ever occupies the
same vertex as the Robber. There are potentially two different versions of the
game: it is unknown whether there is an advantage to the Cops if more than one
Cop is allowed to be on the same vertex at the same time. Clarke and MacGillivray
have extended the method of numbering positions to Cops and Robber games with
any fixed number of Cops [6].

Putting a Cop on each vertex of a graph guarantees that the Robber will be
caught. Therefore, for each graph G there is a least number of Cops that suffice
to catch the Robber. This is called the cop number of G. It was first introduced
by Aigner and Fromme in 1984 [1]. Meniel has conjectured that essentially

√
n

Cops always suffice to catch the Robber if the graph is connected (informally, if it
is possible to get between any two vertices by travelling along edges of the graph).
The best known upper bound on the cop number is due to Chiniforooshan: there
is a number c such that the cop number of a connected graph is always at most
c · n

logn [4].

For any fixed number of Cops it is feasible to determine whether the Cops can
catch the Robber [2, 6, 8, 9, 13]. By feasible we mean that it is possible to write
a computer program that will answer the question in a “reasonable” amount of
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time. On the other hand, it is not feasible to determine the cop number of a graph
[7, 10]. That is, even for relatively small graphs it could take decades or worse for
a computer program to find the answer.

Finally, we mention that graphs do not actually need to be finite. It is possible
to consider Cops and Robber games on infinite graphs (for references, see [6]).
The situation is much more complex. Many of the counter-intuitive subtleties of
dealing with infinite objects quickly come into play.
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by March 15, 2024.

4901. Proposed by Michel Bataille.

Let ABC be a triangle and I its incenter. Let M,N on the line BI and P,Q on
the line CI be such that AM,CN (resp. AP,BQ) are perpendicular to BI (resp.
CI). Prove that M,N,P,Q are concyclic and that MP is parallel to BC.

4902. Proposed by Titu Zvonaru.

Let O be the circumcenter of triangle ABC. Let AN be the altitude from A. Lines
BO and CO intersect the lines AC and AB at E and F , respectively. Prove that
if ∠BAC = 45◦, then the lines NO and EF are perpendicular.

4903. Proposed by Ovidiu Furdui and Alina Ŝıntămărian.

Calculate
∞∑
n=1

ïÅ
1

2n− 1
− 1

2n+ 1
+

1

2n+ 3
− · · ·

ã
− 1

4n

ò
.

4904. Proposed by Ivan Hadinata.

Find all pairs (x, y) of prime numbers x and y such that x ≥ y, x+ y is prime and
xx + yy is divisible by x+ y.

4905. Proposed by Aravind Mahadevan.

In a right-angled triangle, the acute angles x and y satisfy the following equation:

tanx+ tan y + tan2 x+ tan2 y + tan3 x+ tan3 y = 70.

Find x and y.

4906. Proposed by Cristinel Mortici.

Find positive integers m and n such that m3 + n + 12 is a perfect cube and
n2 +m+ 13 is a perfect square.
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4907. Proposed by J. Chris Fisher.

Given triangle ABC with a right angle at A, define A′ to be the midpoint of the
leg AB, B′ to be the point where the perpendicular bisector of BC intersects the
line AC, and C ′ to be the point where the perpendicular bisector of AC intersects
the altitude from A to BC.

Prove that ∆A′B′C ′ is similar to ∆ABC.

4908. Proposed by Mihaela Berindeanu.

In the square ABCD, the points X, Y and Z are respectively on the segments AB,
AD and AX so that XC = XY and ∠ZY X = ∠XCB. Show that AY · ZC2 =
2 · ZB ·BC · Y Z.

4909. Proposed by Michel Bataille.

For each positive integer n, let Pn(x) = (x−1)2n+1(x2− (2n+1)x−1). Show that
the equation Pn(x) = 1 has a unique solution xn in the interval (0,∞). Prove that
lim
n→∞

(xn − 2n) = 1 and find lim
n→∞

n(xn − 2n− 1).

4910. Proposed by Paul Bracken. Let m and n be non-negative integers and
let

Jm,n =

∫ ∞
0

ÅÅ
sin t

t

ãm
−
Å

sin t

t

ãnã dt
t2
.

Prove that the Jm,n are rational multiples of π.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 mars 2024.

4901. Soumis par Michel Bataille.

Soit ABC un triangle et I le centre de son cercle inscrit. Soit M et N des points
de la droite BI, et P et Q des points de la droite CI tels que AM et CN (respec-
tivement AP et BQ) sont perpendiculaires á BI (respectivement CI). Montrez
que M,N,P et Q sont concycliques et que MP est parallèle à BC.

4902. Soumis par Titu Zvonaru.

Soit O le centre du centre du cercle circonscrit au triangle ABC. Soit AN la
hauteur issue de A. Les droites BO et CO coupent les droites AC et AB respec-
tivement en E et F . Montrez que si ∠BAC = 45◦, alors les droites NO et EF
sont perpendiculaires.

4903. Soumis par Ovidiu Furdui et Alina Ŝıntămărian.

Calculez
∞∑
n=1

ïÅ
1

2n− 1
− 1

2n+ 1
+

1

2n+ 3
− · · ·

ã
− 1

4n

ò
.

4904. Soumis par Ivan Hadinata.

Trouvez toutes les paires (x, y) de nombres premiers x et y telles que x ≥ y, x+ y
est premier et xx + yy est divisible par x+ y.

4905. Soumis par Aravind Mahadevan.

Dans un triangle rectangle, les angles aigus x et y vérifient l’équation suivante :

tanx+ tan y + tan2 x+ tan2 y + tan3 x+ tan3 y = 70.

Trouvez x et y.

4906. Soumis par Cristinel Mortici.

Trouvez des entiers positifs m et n tels que m3 + n + 12 est un cube parfait et
n2 +m+ 13 est un carré parfait.

Copyright © Canadian Mathematical Society, 2024

https://publications.cms.math.ca/cruxbox/


40/ Problems

4907. Soumis par J. Chris Fisher.

Étant donné un triangle ABC avec un angle droit en A, soient A′ le milieu du
côté AB, B′ le point où la médiatrice de BC coupe la droite AC, et C ′ le point
où la médiatrice de AC coupe la hauteur du triangle ABC issue de A.

Montrez que ∆A′B′C ′ est semblable à ∆ABC.

4908. Soumis par Mihaela Berindeanu.

Dans le carré ABCD, les points X, Y et Z sont respectivement sur les segments
AB, AD et AX de sorte que XC = XY et ∠ZY X = ∠XCB. Montrez que
AY · ZC2 = 2 · ZB ·BC · Y Z.

4909. Soumis par Michel Bataille.

Pour chaque entier positif n, soit Pn(x) = (x−1)2n+1(x2−(2n+1)x−1). Montrez
que l’équation Pn(x) = 1 a une solution unique xn dans l’intervalle (0,∞). Montrez
que lim

n→∞
(xn − 2n) = 1 et trouvez lim

n→∞
n(xn − 2n− 1).

4910. Soumis par Paul Bracken.

Soient m et n des entiers non négatifs et soit

Jm,n =

∫ ∞
0

ÅÅ
sin t

t

ãm
−
Å

sin t

t

ãnã dt
t2
.

Montrez que les Jm,n sont des multiples rationnels de π.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2023: 49(6), p. 322–325.

4851. Proposed by Mihaela Berindeanu.

Let Γ be the circumcircle of 4ABC, with circumcenter O and radius R. Point X
is diametrically opposed to A, AX ∩BC = {P} andAP = 2PX. The tangent to
the circle Γ through X cuts AB in M and AC in N . Show that

2R ·MN +OM · CN +ON ·BM = MC ·ON +BN ·OM.

All seven of the submissions we received are correct, and we feature the solution
by Theo Koupelis, supplemented by the editor.

Points A,O, P,X are collinear and 2R = AX = 3PX; thus, the circumcenter O
is inside the triangle ABC. Let K be the projection of O onto BC, and assume
without loss of generality that ∠B ≥ ∠C as in the accompanying diagram. Our
initial goal is to prove that the points M,B,O,C,N are concyclic.

Because AX is a diameter of Γ, in the right triangles AXM and AXN we have
XB ⊥ AM and XC ⊥ AN . Thus,

AX2 = AB ·AM = AC ·AN,

and so MBCN is a cyclic quadrilateral; furthermore (as AB = 2R sinC by the
sine law, while AX = 2R),

AM = AX2/AB = 2R/ sinC. (1)

Moreover, OP = R− PX = R/3.
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Consider ∠OPK in the right triangle KOP as an exterior angle of ∆APC; we
have

∠KOP = 90◦ −∠OPK = 90◦ −∠C −∠PAC = 90◦ −∠C −∠XBC = ∠B −∠C.

Thus, from the right triangles BKO and OKP , we get

OK = R · cosA =
1

3
R cos(B − C).

Therefore,

3 cosA = cos(B − C) = cosB cosC + sinB sinC. (2)

Recalling that in any triangle ABC, we have

cosA = − cos(B + C) = sinB sinC − cosB cosC,

add this equation to (2) to obtain

sinB · sinC = 2 cosA,

or

2R sinB = 2 · 2R

sinC
· cosA,

or by (1),

AC = 2 ·AM · cosA.

Thus, AM = MC (because AC/2
AM = cosA implies that the midpoint of AC is the

third vertex of the right triangle whose hypotenuse is AM , so that the line MO
is both the altitude and median of ∆AMC); consequently, ∆AMC is isosceles,
whence ∠AMC = 180◦ − 2∠A = 180◦ − ∠BOC. Therefore, MBOC is a cyclic
quadrilateral, as claimed; furthermore, the points lie on the circle in the order
M,B,O,C,N, as implied by the opening paragraph.

Finally, applying Ptolemy’s theorem to the cyclic quadrilaterals BONM and
COMN we get

OC ·MN +OM · CN = MC ·ON,
and

OB ·MN +ON ·BM = BN ·OM.

The desired result follows by addition since OB = OC = R.

Editor’s comments. Bataille was the only correspondent to investigate the case

where
−→
AP = −2

−−→
PX. He observed that the required equality is not valid with

that arrangement — M,B,C,N would still lie on a circle, but that circle would
never contain O, in which case Ptolemy’s theorem implies that the left-hand-side
would always exceed the right-hand-side. He concluded (as did all solvers) that
the proposer had intended the stated requirement (namely, AP = 2PX) to mean−→
AP = 2

−−→
PX.
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4852. Proposed by Aravind Mahadevan.

In triangle ABC, the bisectors of angles A, B and C meet the sides BC, CA and
AB at D, E and F respectively. If ∠ADC = x, ∠AEB = y and ∠BFC = z,
prove that a sin 2x+ b sin 2y+ c sin 2z = 0 where a, b and c are the lengths of BC,
CA and AB respectively.

All 18 submissions were correct, and almost all were essentially the same. We
feature a typical solution by C. R. Pranesachar.

Since x measures the exterior angle at D of ∆ABD, we have x = A
2 +B. Therefore,

2x = A+ 2B = (A+B + C) + (B − C) = 180◦ + (B − C).

Hence,

a sin 2x = a · (− sin(B − C))

= −2R · sinA · sin(B − C)

= −2R sin(B + C) · sin(B − C)

= R(cos 2B − cos 2C).

Similarly,

b sin 2y = R(cos 2C − cos 2A) and c sin 2z = R(cos 2A− cos 2B).

Adding, we get
a sin 2x+ b sin 2y + c sin 2z = 0.

This completes the proof.

4853. Proposed by Byungjun Lee.

Two congruent ellipses Γ1 and Γ2 with semi-major axis a and semi-minor axis b
are given. The major axis of Γ1 and the minor axis of Γ2 lie on the same line, and
two common internal tangents of Γ1 and Γ2 are perpendicular. Find the area of
the triangle formed by two common internal tangents and one common external
tangent.
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There were 13 correct solutions to the problem from 12 solvers. The proposer
provided a second solution that did not involve analytic geometry; a version of this
is given as Solution 2.

Solution 1.

The area is equal to 1
2 (a2 + b2).

The common internal tangents t1 and t2 of Γ1 and Γ2 meet at a point O on the
common axis of the two ellipses and each is the reflected image of the other in that
axis. Since O is a point from which perpendicular tangents can be drawn to each
ellipse, it is on the director (orthoptic) circle of each. The centres of the director
circles coincide with the centres of the ellipses and their radii are c =

√
a2 + b2.

We place O at the origin and let the equations of Γ1 and Γ2 be respectively

(x+ c)2

a2
+
y2

b2
= 1 and

(x− c)2
b2

+
y2

a2
= 1,

with c > 0. Then the equations of t1 and t2 are y = sx and y = −sx for some real
number s. Since t1 and t2 are perpendicular, −s2 = −1, so we may assume that
t1 has equation y = −x and t2 equation y = x.

Suppose that the common external tangent t0 has equation y = mx + k where
0 < m < 1. Then t0 intersects t1 and t2 at the pointsÅ −k

1 +m
,

k

1 +m

ã
and

Å
k

1−m,
k

1−m

ã
.

The two legs of the right triangle formed by the three tangents have lengths
k
√

2/(1 +m) and k
√

2/(1−m) and the area of this triangle is equal to

1

2

Å
2k2

1−m2

ã
=

k2

1−m2
.

It remains to express this area in terms of a and b. The tangent with slope m to
Γ1 has equation y = m(x+ c) +u and to Γ2 has equation y = m(x− c) + v, where
u2 = a2m2 + b2 and v2 = b2m2 + a2. Observe that

u2 + v2 = (a2 + b2)(m2 + 1) = c2(m2 + 1)

and

u2v2 = a2b2(m4 + 1) + (a4 + b4)m2 = a2b2(m4 + 1) + (c4 − 2a2b2)m2

= a2b2(1−m2)2 + c4m2.

When the tangents to the two ellipses are the same line, then mc+ u = −mc+ v,
so that 2mc = v − u and 4m2c2 = v2 + u2 − 2uv = c2(m2 + 1) − 2uv. Therefore
2uv = −(3m2 − 1)c2. Since k = mc+ u = −mc+ v,

k2 = −m2c2 +mc(v−u) +uv = −m2c2 + 2m2c2 + 1
2 (−3m2 + 1)c2 =

1

2
c2(1−m2).

Hence the area of the triangle is 1
2c

2 = 1
2 (a2 + b2).
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Solution 2.

Let the centres of Γ1 and Γ2 respectively be X and Y . Let t0 be the common
external tangent above XY , t1 and t2 be the common internal tangents, with t1
touching Γ1 and t2 touching Γ2 above XY . Since the point C of intersection of
the perpendicular tangents t1 and t2 lies on XY as well as the congruent director
circles of Γ1 and Γ2, XC = Y C =

√
a2 + b2. Let CZ right bisect XY , where Z

lies above the common axis and CZ =
√
a2 + b2.

CX Y

Z
B

A
D

E

F

G
t0

t1
t2

t3
t4

Γ1

Γ2

Let ρ be the counterclockwise rotation with centre Z through 90◦. Then we have

ρ(X) = Y, ρ(t1) = t2, ρ(t2) = t1.

Suppose that t4 = ρ(t0) and t3 = ρ−1(t0) so that ρ(t3) = t0. The intersection
D = t0 ∩ t3 , with t0 ⊥ t3, lies on the director circle of Γ1. Thus XD = XC. Also
ρ(D) = E = t4 ∩ t0, the intersection of perpendicular tangents to Γ2, so that

Y E = Y C = XC = XD.

Observe that ρ(XD) = ρ(Y E) so that Y E ⊥ XE. Therefore

∠DXC + ∠EY C = 90◦.

Observe also that ∠XDC = ∠XCD and ∠Y EC = ∠Y CE.

∠DCE = 180◦ − (∠DCX + ∠ECY )

= 180◦ − (90◦ − 1
2∠DXC + 90◦ − 1

2∠EY C)

= 1
2 (∠DXC + ∠EY C) = 45◦ = ∠ACZ = ∠BCZ.

Consider the five points A,C,G,E,Z. Since ∠AEG = ∠ACG = 90◦, AEGC is
concyclic. Since

ρ(A) = ρ(t0 ∩ t1) = t4 ∩ t2 = G,
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we have ∠AZG = 90◦ = ∠ACG, so that AZGC is concyclic. Therefore AZEC
is concyclic and ∠AZC = ∠AEC = ∠DEC. Since ∠ACZ = ∠DCE = 45◦,
triangles CAZ and CDE are similar.

Similarly, the points B,C, F,D,Z are concyclic and ∠BZC = ∠EDC. Since
∠BCZ = ∠DCE = 45◦, triangles CDE and CZB are similar. Therefore CAZ
and CZB are similar triangles, and CA : CZ = CZ : CB. Hence CA ·CB = CZ2.
The area of the right triangle ABC is

1

2
CA · CB =

1

2
CZ2 =

1

2
(a2 + b2).

Editor’s Comments. In solution 1, we can determine m in terms of a and b. Since

(9m4 − 6m2 + 1)c4 = 4u2v2 = 4a2b2(1−m2)2 + 4c4m2,

then
(9m4 − 10m2 + 1)c4 = 4a2b2(m2 − 1)2.

We know that m = ±1 satisfy this equation, so we divide by m2 − 1 to get

(9m2 − 1)c4 = 4a2b2(m2 − 1).

Solving for m2, we get

m2 =
c4 − 4a2b2

9c4 − 4a2b2
=

(a2 − b2)2

8(a2 + b2)2 + (a2 − b2)2
.

The equations of the common external tangents are

(a2 − b2)x± (
√

9c4 − 4a2b2)y + 2c3 = 0.

4854. Proposed by Michel Bataille.

Let n be a positive integer and let θk = kπ
n+1 . For r, s ∈ {1, 2, . . . , n}, evaluate

n∑
j=1

(sin θjr + sin θjs)
2.

We received 7 submissions, 4 of which were correct. We present a blend of the
solutions by Giuseppe Fera and the UCLan Cyprus Problem Solving Group.

First, we evaluate

Ck :=
n∑
j=1

cos θjk = − (−1)k + 1

2
(1)

assuming 2(n+ 1) - k. To prove this, let ω = eπi/(n+1) and note that

cos θjk =
ωjk + ω−jk

2
.
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Evaluating the finite geometric series, we have

Ck =
1

2

n∑
j=1

(
ωjk + ω−jk

)
=

1

2

Ç
ω(n+1)k − ωk

ωk − 1
+
ω−(n+1)k − ω−k

ω−k − 1

å
as ωk 6= 1 iff 2(n+ 1) - k. Since ωn+1 = −1 and (−1)−k = (−1)k we get

Ck =
1

2

Ç
(−1)k − ωk
ωk − 1

+
(−1)k − ω−k
ω−k − 1

å
=

1

2

Ç
(−1)k − ωk
ωk − 1

+
(−1)kωk − 1

1− ωk

å
=

1

2

Ç
(1− ωk)

(
(−1)k + 1

)
ωk − 1

å
proving (1). It follows that Ck = 0 if k is odd and Ck = −1 if k is even (at least
when 2(n+ 1) - k).

Now by the well-known trigonometric identity

sinx sin y =
1

2

(
cos(x− y)− cos(x+ y)

)
and its corollary

sin2 x =
1

2

(
1− cos 2x

)
we have

S :=
n∑
j=1

(sin θjr + sin θjs)
2

=
n∑
j=1

(
sin2 θjr + 2 sin θjr sin θjs + sin2 θjs

)
=

n∑
j=1

Å
1− cos 2θjr

2
+ cos(θjr − θjs)− cos(θjr + θjs) +

1− cos 2θjs
2

ã
=

n∑
j=1

Å
1− cos θj2r

2
− cos θj2s

2
+ cos θj(r−s) − cos θj(r+s)

ã
= n− 1

2
C2r −

1

2
C2s + Cr−s − Cr+s.

Note that 2r and 2s are always even, and that r−s and r+s have the same parity.
Furthermore, since r, s ∈ {1, 2, . . . , n}, none of 2r, 2s, r − s, r + s is divisible by
2(n+ 1) except in the case r = s when r − s = 0.

Substituting (1) we get C2r = C2s = −1 and Cr−s − Cr+s = 0 unless r = s, in
which case Cr−s −Cr+s = C0 −C2r = n+ 1 since C0 = n trivially. It follows that
S = n+ 1 if r 6= s and S = 2(n+ 1) if r = s.
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Editor’s Comments. In terms of the Iverson bracket [P ], defined as 1 when P is
true and 0 when P is false, we have

Ck = −[2 | k] + (n+ 1)[2(n+ 1) | k] (1+)

for all n ∈ N and k ∈ Z.

Using Equation (1+), one can show that S/(n+ 1) ∈ {0, 12 , 1, 2} for all n ∈ N and
all r, s ∈ Z according to the pattern in Figure 5.

Figure 5: Plot of S/(n+ 1) for |r|, |s| ≤ n+ 1. Bullet size is proportional to value
(0, 1

2 , 1, or 2). Problem 4854 covered the shaded region. Here, n = 4.

4855. Proposed by Ivan Hadinata.

Find all pairs of positive integers (a, b) such that ab − ba = a− b.
We received 15 correct and 1 incomplete solutions. Almost all solutions were based
on some inequalities reducing the number of considered cases to a few obvious ones.
The following is the solution by UCLan Cyprus Problem Solving Group.

All pairs with a = b or a = 1 or b = 1 are solutions. We will show that the only
other solutions are (3, 2) and (2, 3).

By symmetry we may assume that a > b > 2. Then

ab > ba =⇒ b log a > a log b =⇒ b

log b
>

a

log a
.
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The function defined by f(x) =
x

log x
satisfies

f ′(x) =
log x− 1

log2 x

so it is strictly increasing for x > e. So if b > 3 then we must have f(a) > f(b), a
contradiction.

So we must have b = 2. We observe that a = 3 gives a solution while a = 4 does
not. Also, for a > 5 we have

f(a) > f(4) =
4

log 4
=

4

log 22
=

2

log 2
= f(2) = f(b)

giving a contradiction.

Thus the only additional solution under these assumptions is (3, 2) as claimed.

4856. Proposed by Titu Zvonaru.

Let ABC be a triangle with ∠A = 30◦ and ∠B = 100◦. Consider the points D
and E on the sides AC and BC, respectively, such that ∠ABD = ∠DBC and
DE||AB. Find ∠EAC.

We received 14 submissions, all correct. We present the solution provided by Theo
Koupelis.

Let θ = ∠EAC. Using the law of sines in triangles AEC and ABE we get

sin θ

EC
=

sin 50◦

AE
, and

sin(30◦ − θ)
BE

=
sin 100◦

AE
=

cos 10◦

AE
.

But BD is the angle bisector of ∠ABC and DE ‖ AB, and thus

BE

EC
=
AD

DC
=
AB

BC
=

sin 50◦

sin 30◦
.

From the above we get

sin θ

sin(30◦ − θ) =
sin 30◦

cos 10◦
=

1

2 cos 10◦
=

sin 10◦

sin 20◦
.

Therefore,
sin θ sin 20◦ = sin 10◦ sin(30◦ − θ)

or
cos(20◦ − θ)− cos(20◦ + θ) = cos(20◦ − θ)− cos(40◦ − θ),

or
2 sin 30◦ sin(θ − 10◦) = 0.

But 0◦ < θ < 30◦, and thus θ = 10◦.
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4857. Proposed by Toyesh Prakash Sharma.

Let a, b, c be positive real numbers such that a+ b+ c =
3

2
. Show that

aabb + bbcc + ccaa ≥ 3

2
.

We received 18 submissions, all correct and complete. We present two solutions,
slightly altered by the editor.

Solution 1, by Arkady Alt.

By the AM-GM inequality we have

aabb + bbcc + ccaa ≥ 3
3
√
aabb · bbcc · ccaa = 3

(
aabbcc

)2/3
.

Also, by the weighted AM-GM inequality

1

aabbcc
=

Å
1

a

ãa Å1

b

ãb Å 1

c

ãc
≤

Ö
a · 1

a
+ b · 1

b
+ c · 1

c
a+ b+ c

èa+b+c

=

Å
3

a+ b+ c

ãa+b+c
,

which is equivalent to each of:

aabbcc ≥
Å
a+ b+ c

3

ãa+b+c
=

Å
1

3
· 3

2

ã3/2
=

Å
1

2

ã3/2
and

(
aabbcc

)2/3 ≥ 1

2
.

Hence,

aabb + bbcc + ccaa ≥ 3
(
aabbcc

)2/3 ≥ 3

2
.

Solution 2, by Michel Bataille.

The functions f(x) = x lnx and g(x) = xx are convex on (0,∞) (since f ′′(x) = 1
x

and g′′(x) =
(
1
x + (1 + lnx)2

)
xx are positive on (0,∞)). We deduce that

aabb = ef(a)+f(b) ≥ e2f((a+b)/2) = (g((a+ b)/2))2

and therefore

aabb + bbcc + ccaa ≥ (g((a+ b)/2))2 + (g((b+ c)/2))2 + (g((c+ a)/2))2.

Now, using the fact that the function x 7→ x2 is increasing and convex on (0,∞)
and the convexity of g, we obtain

aabb + bbcc + ccaa ≥ 3

Å
g((a+ b)/2) + g((b+ c)/2) + g((c+ a)/2)

3

ã2
≥ 1

3

Å
3g

Å
a+ b+ c

3

ãã2
= 3 (g(1/2))

2
=

3

2
.

Editor’s Comment. Most solutions did not mention that equality occurs only when
a = b = c.
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4858. Proposed by Anton Mosunov.

Prove that for every positive integer n and for all α1, α2, . . . , αn ∈ R, we have

∫ π

0

n

Ã
n∏
k=1

csc2 (x− αk)dx ≥ 4π.

We receive two submissions and only one is correct and complete. This solution,
presented here, is the proposer’s one. In a second part, we reproduce the proof by
the UCLan Cyprus Problem Solving group that 4π is the best lower bound for the
integral.

Solution 1, by the proposer.

By Jensen’s inequality,

φ

Ç
1

b− a

∫ b

a

f(x) dx

å
≥ 1

b− a

∫ b

a

φ (f(x)) dx,

for any concave function φ(x) and any nonnegative real integrable function f(x)
on [a, b]. We take φ(x) = log(x), so that

log

Ñ
1

π

∫ π

0

n

Ã
n∏
k=1

csc2(x− αk) dx

é
≥ 1

π

∫ π

0

log n

Ã
n∏
k=1

csc2(x− αk) dx.

Observing that

∫ π

0

log n

Ã
n∏
k=1

csc2(x− αk) dx =
1

n

n∑
k=1

∫ π

0

log
(
csc2(x− αk)

)
dx,

and because the functions log
(
csc2(x− αk)

)
has period π, the right member of

the last equality is∫ π

0

log
(
csc2(x)

)
dx = −2

∫ π

0

log (sin(x)) dx = −4I,

where

I =

∫ π
2

0

log (sin(x)) dx.

We claim that I = −π2 log 2. To show that it is the case, observe that

I =

∫ π
2

0

log
(

cos
(π

2
− x
))

dx =

∫ π
2

0

log (cos(x)) dx.
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So

2I =

∫ π
2

0

log (sin(x)) dx+

∫ π
2

0

log (cos(x)) dx

=

∫ π
2

0

log (sin(x) cos(x)) dx =

∫ π
2

0

log

Å
sin(2x)

2

ã
dx

=

∫ π
2

0

log (sin(2x)) dx− π

2
log 2 =

1

2

∫ π

0

log (sinx) dx− π

2
log 2

= I − π

2
log 2.

Hence I = −π2 log 2. We conclude that

log

Ñ
1

π

∫ π

0

n

Ã
n∏
k=1

csc2(x− αk) dx

é
≥ 1

π
(−4I) = log 4.

Exponentiating both sides of the above inequality yields∫ π

0

n

Ã
n∏
k=1

csc2(x− αk) dx ≥ 4π.

Proof of the lower bound condition by the UCLan Cyprus Problem Solving group,
modified by the editor.

We show here that this lower bound cannot be increased.

Lemma. For any integer m ≥ 0, n = 2m, and for x ∈ R, we can pick α1, . . . , αn
such that,

n∏
k=1

sin2(x− αk) =
sin2(2mx)

22m+1−2 .

Proof of the lemma. For m = 0 this is immediate by taking α1 = 0. Assume it is
true for m = r and let α1, . . . , α2r be the choices giving

2r∏
k=1

sin2(x− αk) =
sin2(2rx)

22r+1−2 .

Defining α2r+i = αi + π
2r+1 for each i = 1, . . . , 2r we get

2r+1∏
k=2r+1

sin2(x− αk) =
sin2

(
2r
(
x+ π

2r+1

))
22r+1−2 =

sin2
(
2rx+ π

2

)
22r+1−2 =

cos2(2rx)

22r+1−2 .

Thus

2r+1∏
k=1

sin2(x− αk) =
sin2(2rx)

22r+1−2 ·
cos2(2rx)

22r+1−2 =

(
sin (2r+1x)

2

)2
22r+2−4 =

sin2 (2r+1x)

22r+2−2 .
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So the lemma follows by induction. �

Picking α1, . . . , α2m as in the lemma, we get

I =

∫ π

0

2m

 
22m+1−2

sin2(2mx)
dx = 22−1/2

m−1

∫ π

0

2m

 
1

sin2(2mx)
dx

= 22−1/2
m−1 · 1

2m

∫ 2mπ

0

2m

…
1

sin2 t
dt

= 23−1/2
m−1

∫ π/2

0

2m

…
1

sin2 t
dt .

By Jordan’s concave function inequality, we have sin(t) > 2t
π on [0, π/2], thus

I 6 23−1/2
m−1

∫ π/2

0

Å
π2

4t2

ã2−m
dt = 23−1/2

m−1 ·
Å
π2

4

ã2−m
· (π/2)1−2

1−m

1− 21−m

=
22−2

1−m

1− 21−m
· π .

As m tends to infinity the right hand side tends to 4π, so the lower bound cannot
be improved.

Editor’s comment. For n > 0, let us consider the n points regular subdivision of
(0, π) defined by αk = kπ

n+1 , 1 ≤ k ≤ n, and gn(x) the real function defined on
R \ πQ (the real numbers minus the products of rational numbers by π) by

gn(x) = n

Ã
n∏
k=1

csc2(x− αk).

From

log gn(x) = − 1

n

n∑
k=1

log sin2(x− αk) = − 1

π
· π
n

n∑
k=1

log sin2(x− αk),

and considering the last sum as a Riemann sum, we get

lim
n→∞

log gn(x) = − 1

π

∫ π

0

log sin2(x− y) dy = − 1

π

∫ π

0

log sin2 y dy

= − 4

π

∫ π
2

0

log sin y dy = log 4.

Therefore limn→∞ gn(x) = 4,

lim
n→∞

∫ π

0

gn(x) dx = 4π,

and 4π is the best lower bound.
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4859. Proposed by Trinh Quoc Khanh, modified by the Editorial Board.

Given a triangle ABC, a point X on segment AB and a point Y on segment
AC, such that B, X, Y , C are concyclic, let I, J,K be the incenters of triangles
ABC,XBC, and Y BC, respectively. Prove that AI is orthogonal to JK.

All 9 submissions were correct; we feature a composite of the similar solutions by
the UCLan Cyprus Problem-Solving Group and by C.R. Pranesachar.

Since B,X, Y,C are concyclic while J and K are incenters of their respective
triangles, we have

∠BJC =
180◦ + ∠BXC

2
=

180◦ + ∠BY C
2

= ∠BKC .

It follows that B, J,K,C are concyclic. Note, moreover, that J is between B and
I while K is between I and C. Thus

∠IJK = ∠KCB = ∠ICB =
1

2
“C.

Let D be the point of intersection of AI with JK. Note that I is between A and
D. The external angle at I of ∆ABI satisfies

∠JID = ∠BAI + ∠IBA =
Â+ “B

2
.

Thus, in ∆IDJ we have

∠IDJ = 180◦ − ∠IJK − ∠JID = 180◦ − Â+ “B + “C
2

= 90◦ .

So AI ⊥ JK, as desired.
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4860. Proposed by George Apostolopoulos.

Let ABC be a triangle with ∠A > 90◦. Let M1,M2, . . . ,Mn (n ≥ 1) be internal
points on the side BC such that BM1 = M1M2 = · · · = Mn−1Mn = MnC. Prove
that

AM1 +AM2 + · · ·+AMn < n

 
2n+ 1

6(n+ 1)
BC.

We received 9 solutions, all correct and complete. We present the solution by
Marie-Nicole Gras.

A

B M1 M2 Mk Mn C

We put a = BC, b = CA and c = AB. For all k = 1, . . . , n, we have BMk =
ak

n+ 1
,

and using the cosine Law in 4ABMk, we obtain

AM2
k = AB2 +BM2

k − 2AB ·BMk cos(∠B)

= c2 +
a2k2

(n+ 1)2
− 2

cak

n+ 1
cos(∠B).

We deduce

n∑
k=1

AM2
k = nc2 +

a2

(n+ 1)2

n∑
k=1

k2 − 2ac

(n+ 1)

( n∑
k=1

k
)

cos(∠B)

= nc2 +
a2

(n+ 1)2
n(n+ 1)(2n+ 1)

6
− 2ac

n+ 1

n(n+ 1)

2
cos(∠B)

=
a2n(2n+ 1)

6(n+ 1)
+ nc2 − acn cos(∠B);

we have c− a cos(∠B) = b cos(∠A) < 0, since ∠A > 90o, which implies

n∑
k=1

AM2
k <

a2n(2n+ 1)

6(n+ 1)
· (1)
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The AM-QM inequality implies
1

n

n∑
k=1

AMk ≤

Ã
1

n

n∑
k=1

AM2
k , whence:

AM1 +AM2 + · · ·+AMn < n

 
2n+ 1

6(n+ 1)
BC.
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