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Shawn Godin



244/ Editorial

EDITORIAL
I often tell my students that there are two steps towards becoming a math person:
first, you should be a person and second, you should do some math. It sounds
trivial, but the first step is important in many ways – we should always remember
that we, our students and our teachers are humans, each with unique personalities,
strengths and weaknesses, likes and dislikes. But in order to be a human, one
needed to be born and raised.

May 8th marks Mother’s Day in Canada this year. Without our mothers, we
wouldn’t be the persons that we are today, we wouldn’t do math, we wouldn’t
even be! So let’s use this opportunity to celebrate mothers in our lives and thank
them for their love and support.

Kseniya Garaschuk

This drawing of Paul Erdős and his mother Anna Erdős is by Listiarini Listiarin
and Veselin Jungić. The graph in the background is authors’ take on Fan Chung-
Graham’s Internet graph.
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MATHEMATTIC
No. 35

The problems featured in this section are intended for students at the secondary school
level.

Click here to submit solutions, comments and generalizations to any
problem in this section.

To facilitate their consideration, solutions should be received by July 15, 2022.

MA171. PBCQ is a trapezoid in which PQ : BC = 2 : 3. If the area of
triangle ABC is 36, then determine the area of PBCQ.

B

P Q

C

A

MA172. Moe and Joe start together at point A and walk towards point
B. Moe walks x times as fast as Joe. Moe reaches B, then travels back until he
meets Joe. Determine the fraction of the distance AB that Joe has travelled at
this point.

MA173. You are given an acute-angled triangle ABC in which J is the centre
of the ascribed circle which touches BC (and touches AB and AC produced).
Calculate the angle AJC in terms of the angles in the triangle.

MA174. If a, b, c are positive real numbers, find the least value ofÅ
b+ c

a

ã(c+ a

b

)Åa+ b

c

ã
MA175. Given that p and q are two consecutive odd primes, show that their
sum has three or more prime factors.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Les problèmes proposés dans cette section sont appropriés aux étudiants de l’école sec-
ondaire.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2022.

MA171. PBCQ est un trapèze tel que PQ : BC = 2 : 3. Si la surface du
triangle ABC égale 36, déterminer la surface de PBCQ.

B

P Q

C

A

MA172. Marcelle et Jeannette quittent le point A au même moment, en
destination du point B. Or, Marcelle marche à une vitesse x fois celle de Jeannette.
Arrivant à B, Marcelle retrace ses pas jusqu’à ce qu’elle rencontre Jeannette.
Déterminer la fraction de la distance AB parcourue par Jeannette en ce moment
de rencontre.

MA173. Soit ABC un triangle acutangle. Soient aussi J le centre du cercle
exinscrit touchant BC, les côtés AB et AC étant prolongés. Calculer l’angle AJC
en termes des angles du triangle.

MA174. Si a, b et c sont des nombres réels positifs, déterminer la plus petite
valeur de Å

b+ c

a

ã(c+ a

b

)Åa+ b

c

ã
MA175. Soient p et q deux nombres premiers impairs consécutifs. Démontrer
que leur somme possède au moins trois facteurs premiers.
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MATHEMATTIC
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(10), p. 475-477.

MA146. Proposed by Alex Bloom.

Solve the following equation for real numbers x and y:

(x2 + 1)(y2 + 1)− 2(x+ 1)(y + 1) + 4 = 0.

We received 15 solutions, of which 11 were correct. There were several correct
solutions that used the discriminant or derivative, but we have preferred a quick
and elegant solution by a “sum of squares” technique. We present the solution by
Bagheri Mehrsa.

Suppose x and y are real numbers that satisfy

(x2 + 1)(y2 + 1)− 2(x+ 1)(y + 1) + 4 = 0.

Expanding and rearranging, we get

0 = (x2y2 + x2 + y2 + 1)− 2(xy + x+ y + 1) + 4

= x2y2 + x2 + y2 + 1− 2xy − 2x− 2y − 2 + 4

= (x2y2 − 2xy + 1) + (x2 − 2x+ 1) + (y2 − 2y + 1)

= (xy − 1)2 + (x− 1)2 + (y − 1)2.

Since a sum of squares of real numbers equals 0 if and only if each real number
being squared is individually equal to 0, this yields that

(xy − 1)2 = (x− 1)2 = (y − 1)2 = 0,

and so x = y = 1. Substituting this into the original equation shows that (x, y) =
(1, 1) is indeed a solution.

MA147. Proposed by Didier Pinchon.

Let ABC be an acute triangle, D the midpoint of BC, I the center of the incircle
of triangle ABD, and E the intersection between the segment AD and the circle
of diameter BC. Prove that the points A,B,E and I are concyclic.

We received 7 submissions of which 4 were correct and complete. We present the
solution by Aravind Mahadevan.

Copyright © Canadian Mathematical Society, 2022
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First we show that4IBD ∼= 4IED. Since I is the incentre of4ABD, ID bisects
∠BDE; that is, ∠IDB = ∠IDE. Sides BD and DE are equal since they are radii
in the circle drawn with BC as diameter. Finally, side ID is common to both
triangles, so by side-angle-side 4IBD ∼= 4IED. It follows that ∠IBD = ∠IED.

However, ∠IBD = ∠IBA since BI is the angle bisector of ∠ABD. It follows
that ∠IED = ∠IBA. Since ∠IED is the opposite exterior angle to ∠IBA in
quadrilateral AEIB we can conclude that AEIB is cyclic. Therefore, A, B, E
and I are concyclic points.

MA148. A large circle of radius 1 has centre at the point J and 4 small
circles (with diameters equal to the radius of the larger circle) are drawn inside of
it as shown below. Evaluate the area of the larger circle not inside any of the 4
small circles.

Originally problem 6b from the 2017 W. J. Blundon Mathematics Contest.

Crux Mathematicorum, Vol. 48(5), May 2022
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We received 7 solutions, out of which we present the one by Mehrsa Bagheri.

With the help of the following figure, it is easy to see that the area of the larger
circle not inside any of the 4 small circles is equal to the area of the big circle (of
radius 1) minus the sum of the area of two smaller circles (of radius 1

2 ) and the
area of a square with side length 1.

Hence the area of the larger circle not inside any of the 4 small circles is equal to

π − (1 +
π

2
) =

π

2
− 1.

MA149. Calculate

52 + 3

52 − 1
+

72 + 3

72 − 1
+

92 + 3

92 − 1
+ · · ·+ 20212 + 3

20212 − 1
.

Originally problem 7b from the 2017 W. J. Blundon Mathematics Contest.

We received 16 submissions of which 11 were correct and complete. We present
the solution by Alex Bloom.

In general, each term can be written as

n2 + 3

n2 − 1
= 1 + 2

Å
1

n− 1
− 1

n+ 1

ã
,

so we can rewrite the sequence as

1 + 2

Å
1

4
− 1

6

ã
+ 1 + 2

Å
1

6
− 1

8

ã
+ 1 + 2

Å
1

8
− 1

10

ã
+ · · ·+ 1 + 2

Å
1

2020
− 1

2022

ã
.
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There are 1009 terms, so when we add the 1s together we get

1009 + 2

Å
1

4
− 1

6
+

1

6
− 1

8
+

1

8
− 1

10
+ · · ·+ 1

2020
− 1

2022

ã
= 1009 + 2

Å
1

4
− 1

2022

ã
= 1009 +

1009

2022
=

2041207

2022
.

MA150. Let us call a point an integer point if both its coordinates are
integer numbers. For example, (1, 2) and (0, 5) are integer points, but (1, 3/2)
is not. What is the minimum number of integer points in the plane needed to
guarantee that there is always a pair amongst them with an integer midpoint?

Originally problem 9 from the 2019 W. J. Blundon Mathematics Contest.

We received 11 solutions, of which 10 were correct. We present the solution by
Henry Ricardo.

The answer is 5. To see this, we note that integer points (xi, yi) and (xj , yj) have
an integer midpoint (xi + xj

2
,
yi + yj

2

)
if and only if xi + xj and yi + yj are even. This, in turn, is equivalent to saying
that xi and xj have the same parity and yi and yj have the same parity.

If we define pigeonholes for integer points in the plane by the parity of the coordi-
nates, we have the holes: (odd, odd), (odd, even), (even, odd), and (even, even).
With 5 integer points, at least two must be in the same pigeonhole. That is, the
two x-coordinates must have the same parity and the two y-coordinates must have
the same parity and so the two points must have an integer midpoint. That this is
not guaranteed for fewer than 5 integer points is shown by the counterexamples:

{(1, 2), (2, 3)},
{(1, 1), (2, 2), (2, 3)},
{(1, 1), (1, 2), (2, 1), (2, 2)}.

Crux Mathematicorum, Vol. 48(5), May 2022
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PROBLEM SOLVING
VIGNETTES

No. 22
Shawn Godin

Revisiting MA108

Once a problem is solved, it is often fruitful to return to it to see if there is anything
else to discover lurking beneath the surface. When the solution to MA108 appeared
[2021: 47(7), p. 330], Crux editor Ed Barbeau suggested that the problem would
be worth revisiting. As a reminder, here is the problem, as it appeared [2021:
47(2), p. 72]:

MA108. Suppose that a, b, c and d are positive integers that satisfy
the equations

ab+ cd = 38, ac+ bd = 34, ad+ bc = 43.

What is the value of a+ b+ c+ d?

Originally Question 29 of 2013 University of Cape Town Mathematics
Competition (Grade 12).

It was pointed out that the solution presented in Crux could be regarded as
incomplete, so let’s start with a complete solution. Adding the first two equations
and factoring yields

ab+ cd+ ac+ bd = 72

a(b+ c) + d(c+ b) = 72

(a+ d)(b+ c) = 72

Similarly, adding and factoring other pairs of equations yields the following system

(a+ d)(b+ c) = 72

(a+ c)(b+ d) = 81

(a+ b)(c+ d) = 77

The only ways to factor 77 into positive integers are 1× 77 and 7× 11. However,
since our variables are positive integers, each of the factors in the system must be
larger than 1. Hence we must use 77 = 7× 11. Thus, if there is a solution to our
original problem, we must have a + b + c + d = 7 + 11 = 18. Therefore, we can
rewrite our system as

(a+ d)(b+ c) = 72 = 6× 12

(a+ c)(b+ d) = 81 = 9× 9

(a+ b)(c+ d) = 77 = 7× 11

Copyright © Canadian Mathematical Society, 2022



252/ Problem Solving Vignettes

where each of the numbers on the right is factored as the product of two positive
integers whose sum is 18.

It is important to notice that if any of the four variables are equal, it would produce
equal numbers in the problem. However, since the values 38, 34, and 43 are unique,
our four variables must be unique as well. I will leave it to interested readers to
verify this.

Notice that the sum of every possible pair of variables appears as a factor in one
of our equations. Suppose A < B < C < D are four distinct numbers. Then we
must have

A+B < A+ C < A+D < B +D < C +D

A+ C < B + C < B +D

This means, the smallest two sums are A + B and A + C; and the largest two
sums are B + D and C + D. The middle two sums are A + D and B + C, but
we do not know which is largest! In fact, depending on the choice of numbers,
A+D < B+C, A+D > B+C, and A+D = B+C are all possible. I will leave
it to the reader to construct sets of numbers for each of these cases.

As was noted in the solution, we can see from the original system that if (a, b, c, d) is
a solution, then so are (b, a, d, c), (c, d, a, b), and (d, c, b, a). Hence, we will assume,
without loss of generality, that a is the smallest of the four variables. How does
this help? We know that the smallest sum is the sum of the two smallest numbers,
hence since the smallest factor is 6, then it must be a + d, and d is the second
smallest number. Similarly, the next largest factor is 7 which means a+ b = 7 and
we now know a < d < b < c and we get the following system

a+ d = 6 b+ c = 12

a+ c = 9 b+ d = 9

a+ b = 7 c+ d = 11

which yields as its only solution (a, b, c, d) = (2, 5, 7, 4), which, with the permuta-
tions discussed earlier, are the solutions presented in [2021: 47(7), p. 330].

Hence we know that a solution to the original system exists with desired sum of
18, answering the question. As was pointed out in the solution, if the numbers 38,
34 and 43 from the original problem were replaced by 34, 46, and 31 we get two
groups of four solutions for (a, b, c, d), namely (1, 6, 4, 7) and (2, 5, 3, 8), and their
permutations. And for all these solutions, a+ b+ c+ d = 18. What is going on?

If we go through a similar process as in the first case, we end up with the system

(a+ d)(b+ c) = 80 = 8× 10

(a+ c)(b+ d) = 65 = 5× 13

(a+ b)(c+ d) = 77 = 7× 11

where the presence of 77 forces a + b + c + d = 7 + 11 = 18 and the factorings
shown. Again, without loss of generality we can assume that a is the smallest.

Crux Mathematicorum, Vol. 48(5), May 2022
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Then since 5 and 7 are the smallest factors we can determine a < c < b < d and
we know for sure that

a+ c = 5 b+ d = 13

a+ b = 7 c+ d = 11

However, we are not sure if a+ d > b+ c or a+ d < b+ c. If a+ d > b+ c, then
the other equations are

a+ d = 10 b+ c = 8

and the system has solution (a, b, c, d) = (2, 5, 3, 8). Similarly, if a+d < b+c, then
the other equations are

a+ d = 8 b+ c = 10

and the system has solution (a, b, c, d) = (1, 6, 4, 7). Notice that in the original
problem, the “middle two” sums corresponded to the factors of 81, which forces
them both to be 9, yielding one solution. However, in this case there are two
possibilities, each yielding a solution. This leads us to wonder how many different
ways can we replace the values 38, 34, and 43 in the original problem with some
other values p, q, and r and have a solution in positive integers such that a+ b+
c+ d = 18?

Note that if we just permute the values amongst the equations, we end up with
the same set of values for our variables but also permuted. This makes sense as for
any collection of 4 distinct numbers there are 4! = 24 ways to arrange them. In our
solutions, we see that solutions come in “packets” of 4. If we combine this with the
3! = 6 ways we can permute 38, 34, and 43, we get our 4× 6 = 24 permutations.
Therefore, we can assume, without loss of generality, that p < q < r.

Trivially, if we just pick four unique positive integers that add to 18, we can run
them through the expressions to come up with the p, q, and r. We could even use
non-unique values if we don’t care about p, q, and r being unique. Rather than
do that, let’s see if we can predict anything about p, q, and r.

Hence, our system is now

ab+ cd = p,

ac+ bd = q,

ad+ bc = r.

Adding and factoring as before yields

(a+ d)(b+ c) = p+ q

(a+ c)(b+ d) = p+ r

(a+ b)(c+ d) = q + r

where p+ q < p+ r < q + r. Since we want a+ b+ c+ d = 18, we must have

p+ q = f(x)

p+ r = f(y)

q + r = f(z)

Copyright © Canadian Mathematical Society, 2022
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where f(x) = x(18 − x) and, without loss of generality, 2 ≤ x < y < z ≤ 9 (we
can even raise the lower limit to 3 if we want unique values). From this, we can
solve and get

p =
f(x) + f(y)− f(z)

2
,

q =
f(x)− f(y) + f(z)

2
,

r =
−f(x) + f(y) + f(z)

2
.

The reader may enjoy verifying that x = 6, y = 9, z = 7 reproduces the original
problem and x = 8, y = 5, z = 7 reproduces the other case we considered.

Note, however, that p, q, and r are positive integers so f(x) + f(y)− f(z), f(x)−
f(y) + f(z), and −f(x) + f(y) + f(z) should all be divisible by 2. It is easy to
check that x and f(x) have the same parity. Hence x, y, and z must either be all
even, or two of them are odd and the other is even.

Does that mean that if we pick x, y, and z according to our conditions then we
will have a solvable system? Furthermore, if z = 9, so that the “middle two” sums
are both 9, will be have one set of four solutions and otherwise have two? Not
quite. If we choose x = 3, y = 6 and z = 9 there are no solutions that satisfy
the conditions of the problem. Similarly, x = 3, y = 7 and z = 8 only yields
one set of four solutions while x = 3, y = 5 and z = 8 has none. However if we
relax our condition in the original problem from positive integers to just integers,
our predicted number of solutions holds. The reader may enjoy showing that any
integers x < y < z < 9 will yield a system with two families of four solutions while
x < y < z = 9 will yield one family of four.

This leaves us to explore other ideas with the original constraint of positive inte-
gers:

• What is the smallest possible sum a + b + c + d that can be achieved by
systems of this sort?

• Can we predict which combinations of x, y, and z will produce non-positive
values in a solution?

• Are there values of a + b + c + d where all solutions come in two groups of
four?

We can think about generalizing the idea behind the problem but, unfortunately,
the number of variables and equations increases, and the “fuzziness” about the
ordering of the sums of collections of terms becomes more difficult to navigate.
Braver and more patient readers may enjoy giving it a go. Have fun exploring this
problem further.

Crux Mathematicorum, Vol. 48(5), May 2022
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MATHEMATICS FROM THE
WEB

No. 1

This column features short commentaries or descriptions of mathematical items
from the internet that may be of interest to high school students and teachers.
Your contributions are welcomed and may be sent to mathemattic@cms.math.ca.

Snow art in New Brunswick
https://www.cbc.ca/news/canada/new-brunswick/snow-art-nb-1.6358785

While the cold winter months find many of us tucked away warm in our homes,
John Panopoulos and Charmaigne Letourneau enjoy stamping out mathematical
art in the snow. See some of their beautiful work and read about their process in
this article from the CBC. The article includes an embedded time-lapse video of
one of the pieces being created.

Ooodle
https://mathszone.co.uk/resources/grid/ooodle

Are you looking for a mathematical parallel to the Wordle craze? Give Ooodle a
try to scratch that itch. The rules are very similar to Wordle but the letters have
been replaced with digits and the challenge is to determine the mystery numerical
expression. Ooodle is part of a larger site of fill in the grid challenges from Maths
Zone (https://mathszone.co.uk). Check out the different challenges available
on the site that are broadly separated into two categories: fluency and reasoning.
(Submitted by Paul Alves, Resource Teacher - Mathematical Literacy, Peel District
School Board, Mississauga Ontario.)

Can you solve this tricky sum from Indonesia?
https://youtu.be/VO4QElbHv-0

The YouTube channel Mind Your Decisions quite often contains problems that
would be of interest to the readers of MathemAttic. The problem in the video is
to solve the sum

1

10−9 + 1
+

1

10−8 + 1
+ · · ·+ 1

108 + 1
+

1

109 + 1

The video uses one method to solve the problem, different from the approach I
would have used. It is nice to look in the discussions of the videos because you will
usually see some other solutions (including the method that I would have used).

Google’s ‘DeepMind’ does Mathematics
https://www.numberphile.com/podcast/deep-mind

For those interested in hearing about the impact AI is having on the work of
mathematicians, check out this recent episode of the Numberphile podcast around
AI and math. The episode explores the impact of Google’s ‘DeepMind’ on the
work of mathematicians - including the skepticism and embrace of this new tool

Copyright © Canadian Mathematical Society, 2022
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in mathematics. The AI teases out patterns that may have gone undetected in
previous work that the mathematicians then use as the basis for their work.
(Submitted by Paul Alves, Resource Teacher - Mathematical Literacy, Peel District
School Board, Mississauga Ontario.)

MacTutor History of Mathematics Archive
https://mathshistory.st-andrews.ac.uk/

Want to know more about your favourite mathematician? Curious about which
mathematicians were born or died on today’s date? Aching for some history of π?
Then the MacTutor History of Mathematics Archive is for you. Containing over
3000 biographies of mathematicians, numerous essays on historical topics, and an
index of famous mathematical curves, the archive contains a wealth of material
for the teacher and interested student alike.

Online Math Tools – L-System Generator
https://onlinemathtools.com/l-system-generator

An L-system, also called the Lindenmayer system, is an alphabetic system for
turtle geometry. It uses a system of symbols such as F (move forward one unit,
tracing your path), f (move forward one unit), + (rotate counter-clockwise by a
fixed angle), and − (rotate clockwise by a fixed angle). A replacement rule, or
rules, are defined to replace one set of rules with another. For example, starting
with F and using the replacement rule F = F + F − −F + F where the angle
of rotation is 60◦, the original line segment is replaced by the shape of a segment
with an equilateral triangular “bump” in it. As this process is iterated fractal-like
objects are created. Four iterations of the rule above give the Koch curve shown
below (with width of 800 and height of 231). Other examples are given, have fun
creating your own!

Crux Mathematicorum, Vol. 48(5), May 2022
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From the bookshelf of . . .
Kseniya Garaschuk

This new feature of MathemAttic brings attention to books of potential interest to
the readers. Some of these will be reviews whereas others will be hearty recom-
mendations from the contributors. If you have a book related to mathematics that
would be of interest to secondary school students and/or teachers, feel welcome to
send along a submission to MathemAttic@cms.math.ca. Publishers are also wel-
come to send along books for possible review.

Math and Science Across Cultures: Activities and Investigations from the
Exploratorium
by Maurice Bazin, Modesta Tamez and The Exploratorium Teacher Institute
ISBN 978-1565845411, 196 pages
Published by The New Press, New York, 2003.

What is the history of dye colours? How do you collect water in the desert? Why
are there feathers on arrows? Can you make the following figure with just one
continuous line?

I don’t exactly remember who recommended this book
to me or when I got it, but it’s been on my shelf for
a few years now: “Math and Science Across Cultures”
by Maurice Bazin, Modesta Tamez and the Explorato-
rium Teacher Institute. Like I do with many of my
math books, I occasionally grab it off the shelf, find
something that catches my eye and dive in. I generally
like math books arranged in self-contained chapters, so
I can flip through and find something I am currently
in the mood for – this book is no exception with its
14 distinct units. What is exceptional about this book
though is the breadth and depth of material in terms
of meaningful cultural presentations, diverse tasks and contexts, and, of course,
mathematics.

The book was originally written for teachers, which is immediately clear: each unit
has a list of materials needed, suggested time for activity and age of participants.
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Furthermore, the activities are laid out with guiding questions to be posed in the
classroom, with advice on how one might approach certain tasks. Each unit comes
with recommended resources for further reading. At the end of the book, you will
also find a detailed table connecting each unit to the National Council of Teachers
of Mathematics math content standards.

While written for teachers, the book doesn’t follow rigid lesson plan templates
or overwhelm a non-teacher reader with targeted curriculum competencies. The
units are written holistically as hands-on explorations, each in its own style, so
that anyone is able to get engaged and follow. Some are written as narratives with
proposed in-text questions to ponder, while others have step by step instructions
for the exploration (very useful for things such as wool dyeing!). There really
is no age restriction on the material due to the rich meaningful introduction of
each topic and the open ended nature of suggested investigations. My 5-year-old
daughter and I explored sona sand drawings and basket weaving, while students
in my 4th year history of math course worked with quipus to learn about Inca
counting.

What I really enjoy about this book is that it offers activities from a wide variety
of cultures and, for each one, it provides a thoughtful context rooted in cultural
traditions. The authors don’t rush into exploring science connected to the cur-
riculum; rather, they take the time to describe the cultural background, how it
arose in the daily lives of the people and the world they live or lived in, and why
it was important. Each unit provides a wholesome and engaging opening, leaving
you wanting to learn more about Brazilian carnavals and Chinese tea traditions.

The book addresses one very important disconnect present in many math books
when presenting real-life applications, namely the lack of connection to the phys-
ical materials related to the task. How often do we say ‘consider the width of
metal/paper/cardboard to be negligible’ when solving a standard calculus prob-
lem of constructing a box or a can with some desired properties, such as maximum
volume or minimal surface area? The application itself seems authentic enough:
industry manufacturers truly have production constraints and wish to optimize
material usage. But the habit of making simplifying assumptions without dis-
cussing them results in unexpected bafflement when we are faced with the actual
task of building an object. This is what makes this book such a valuable resource
as it makes you actually do things!

Take the Weaving Baskets unit. It has lots of pictures to guide you through
creation of different kinds of weaves, so my daughter and I read through it, decided
on a basket we wanted to build and set to work. First of all, preparation of the
materials (strips of paper from recycled magazines in our case) took much longer
than expected – you need lots of strips. Thinking of Scottish basket makers that
use willow and Coast Salish people that use cedar bark, we were able to appreciate
how much effort goes into collecting and preparing the materials before the weaving
even begins. Then came the weaving. Our strips did not behave like the ones in
the pictures: they slid around, didn’t bend as expected and escaped from our
novice hands. We had trouble sticking to the pattern as the simple ‘over-under’
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didn’t work out so simply with actual strips and we had to constantly re-check our
work. No amount of reading about the craftsmanship will make you appreciate
the difficulty of the work and the value of the artistry the way you do once you
try it yourself. And then of course the time... our little basket took a couple of
hours to make, so even accounting for an expert being a lot more efficient than
we were, this is serious time commitment to produce something that can carry a
non-trivial amount of things.

All in all, this book combines meaningful cultural context and inviting hands-on
explorations of various math and science concepts. Work through it by yourself,
with your students, friends or kids. Find a unit that speaks to you and get hooked
on it.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This book is a recommendation from the bookshelf of
Kseniya Garaschuk. Kseniya is an Assistant Professor at
the University of the Fraser Valley and Editor-in-Chief
of Crux. She has been involved in outreach since grad
school, having founded and organized several math camps
and other outreach events. In her day job, Kseniya teaches
math and pursues research in applied math education. Her
current scholarly activities revolve around facilitating op-

portunities for student-created content and effective peer feedback exchange. De-
pending on when you ask, she lives in Abbotsford, BC or Ottawa, Ontario with
her husband, their daughter and one menace of a dog.
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From the lecture notes of . . .
Andrijana Burazin, Veselin Jungić and Miroslav Lovrić

In the theory of sound waves, a sawtooth wave is described as a wave that ramps
upwards and then sharply drops; see Figure 1 (left). The problem we propose
relates to a modification of a sawtooth wave, in which the ramp (rise) is circu-
lar, and the amplitudes are limited by a specific line; see Figure 1 (right). This
problem, suitable for a calculus class for science or mathematics majors, combines
geometry, trigonometry, proof by induction and the sum of a geometric series.

x

Figure 1. A sawtooth wave (left) and a modified sawtooth wave (right).

Start with a a right triangle ∆A0B0C whose hypotenuse A0C is of length 1, and
the angle ∠CA0B0 = x, where 0 < x < π/2. Next, draw a circular arc centred at
A0 of radius A0B0 and mark its intersection with the hypotenuse by A1. Drop the
perpendicular A1B1 from the point A1 onto the side B0C. Repeat: draw a circular
arc centred at A1 of radius A1B1 and mark its intersection with the hypotenuse
by A2. Drop the perpendicular A2B2 onto the side B0C.

By continuing this process, we will construct two sequences of points, Ai ∈ A0C
and Bi ∈ B0C so that

|AiAi+1| = |AiBi| and AiBi ⊥ B0C

where i = 0, 1, 2, . . . . See Figure 1 (right).

Problem

Label the lengths ai = |AiC|, bi = |AiBi|, and the arc length ci = |◊�BiAi+1|, where
i ≥ 0. Let di denote the area of the sector BiAiAi+1. Find the following four
quantities:

a =
∞∑
i=0

ai, b =
∞∑
i=0

bi, c =
∞∑
i=0

ci, and d =
∞∑
i=0

di.
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Solution. We observe that a0 = |A0C| = 1 and, from cosx = |A0B0|/|A0C| =
b0/a0, we obtain b0 = a0 cosx = cosx.

Using the formula for the length of a circular arc (the radius times the angle in
radians), we find that

c0 = |’B0A1| = |A0B0| · x = b0x = x cosx.

From the formula for the area of a circle sector (1/2 times the angle in radians
times the radius squared) we obtain

d0 =
1

2
x |A0B0|2 =

1

2
xb20 =

1

2
x cos2 x

Continue in the same way:

a1 = |A1C| = |A0C| − |A0A1| = |A0C| − |A0B0| = a0 − b0 = 1− cosx

b1 = |A1B1| = |A1C| cosx = a1 cosx = cosx(1− cosx)

c1 = |’B1A2| = |A1B1| · x = b1x = x cosx(1− cosx)

d1 =
1

2
x |A1B1|2 =

1

2
xb21 =

1

2
x cos2 x(1− cosx)2

Likewise,
a2 = a1 − b1 = 1− cosx− cosx(1− cosx) = (1− cosx)2

b2 = a2 cosx = cosx(1− cosx)2

c2 = xb2 = x cosx(1− cosx)2

d2 =
1

2
xb22 =

1

2
x cos2 x(1− cosx)4

We now proceed by induction. Assume that ai−1 = (1 − cosx)i−1 and bi−1 =
cosx(1− cosx)i−1 for i ≥ 1. Then

ai = ai−1 − bi−1 = (1− cosx)i−1 − cosx(1− cosx)i−1 = (1− cosx)i.

Now that we have ai, we can calculate the remaining quantities:

bi = ai cosx = cosx(1− cosx)i

ci = xbi = x cosx(1− cosx)i

di =
1

2
xb2i =

1

2
x cos2 x(1− cosx)2i

(for i ≥ 0). We are now ready to calculate the sums.

(1) Because 0 < 1− cosx < 1, the sum of the geometric series formula gives

a =
∞∑
i=0

ai =
∞∑
i=0

(1− cosx)i =
1

1− (1− cosx)
=

1

cosx

Note that a→∞ as x→ π/2.
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(2) From (1), we obtain

b =
∞∑
i=0

bi =
∞∑
i=0

cosx(1− cosx)i = cosx
∞∑
i=0

(1− cosx)i = cosx · a = 1

Makes sense, as bi = |AiBi| = |AiAi+1|, and thus all bi, put together, form the
hypotenuse |A0C|.
(3) With the help of the sum in (2), we find

c =
∞∑
i=0

ci =
∞∑
i=0

x cosx(1− cosx)i = x
∞∑
i=0

cosx(1− cosx)i = xb = x

(4) For the sum of the areas of all circular sectors, we obtain

d =
∞∑
i=0

di =
∞∑
i=0

1

2
x cos2 x(1− cosx)2i =

1

2
x cos2 x

∞∑
i=0

(1− cosx)2i

Using the sum of the geometric series (note that |(1− cosx)2| < 1) we find

∞∑
i=0

(1− cosx)2i =
1

1− (1− cosx)2
=

1

1− (1− 2 cosx+ cos2 x)
=

1

cosx(2− cosx)

and therefore

d =
1

2
x cos2 x

1

cosx(2− cosx)
=

1

2
x

cosx

2− cosx
.

We are done.

For us, the beauty of the problem lies in the fact that it naturally combines several
ideas and concepts that students do not often see in a single problem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Andie Burazin is a passionate mathematics practitioner at the University of Toronto
Mississauga who enjoys supporting students in any capacity; you might catch her
watching hockey or basketball. Veselin Jungic is a Teaching Professor at the
Department of Mathematics, Simon Fraser University. Miroslav Lovric is a math-
loving professor at McMaster University.
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OLYMPIAD CORNER
No. 403

The problems featured in this section have appeared in a regional or national mathematical
Olympiad.

Click here to submit solutions, comments and generalizations to any
problem in this section

To facilitate their consideration, solutions should be received by July 15, 2022.

OC581. Find the greatest positive integer n such that n+ 3 divides 13 + 23 +
· · ·+ n3.

OC582. Two plane mirrors OP and OQ are inclined at an acute angle
(diagram is not to scale). A ray of light XY parallel to QO strikes mirror OP at
Y . The ray is refelcted and hits mirror OQ. Then it is reflected again and hits
mirror OP . Finally, it is reflected for a third time and strikes mirror OQ at right
angles at R, as shown. The distance OR is 5 cm. The ray XY is d cm from the
mirror OQ. What is the value of d?

OC583. Reduce the following expression to a simplified rational

cos7 π

9
+ cos7 5π

9
+ cos7 7π

9
.

OC584. We say that two sequences x, y : N → N are completely different
if x(n) 6= y(n) holds for all n ∈ N. Let F be a function assigning a natural
number to every sequence of natural numbers such that F (x) 6= F (y) for any
pair of completely different sequences x, y, and for constant sequences we have
F ((k, k, . . . )) = k. Prove that there exists n ∈ N such that F (x) = x(n) for all
sequences x.

Copyright © Canadian Mathematical Society, 2022
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OC585. Let n ≥ 3 be a fixed integer. The number 1 is written n times on a
blackboard. Below the blackboard, there are two buckets that are initially empty.
A move consists of erasing two of the numbers a and b, replacing them with the
numbers 1 and a+b, then adding one stone to the first bucket and gcd(a, b) stones
to the second bucket. After some finite number of moves, there are s stones in the
first bucket and t stones in the second bucket, where s and t are positive integers.
Find all possible values of the ratio t/s.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale.

Cliquez ici afin de soumettre vos solutions, commentaires ou
généralisations aux problèmes proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2022.

OC581. Déterminer le plus grand entier positif n tel que n + 3 divise 13 +
23 + · · ·+ n3.

OC582. Le schéma qui se trouve ci-bas, pas nécessairement à l’échelle, illustre
deux miroirs OP et OQ se rencontrant en un angle aigu. Un rayon de lumière XY ,
parallèle à OQ, frappe le miroir OP au point Y . Ce rayon est réfléchi et frappe
le miroir OQ, puis est de nouveau réfléchi, frappant le miroir OP . Après une
troisième réflexion, le rayon frappe le miroir OQ au point R, à un angle rectangle,
tel qu’indiqué. Or, la distance OR est de 5 cm, et le rayon XY se trouve à une
distance de d cm du miroir OQ. Déterminer la valeur de d.

OC583.

Déterminer le nombre rationnel simplifié égal à la valeur de l’expression

cos7 π

9
+ cos7 5π

9
+ cos7 7π

9
.
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OC584. Deux suites x, y : N → N sont dites complètement différentes si
x(n) 6= y(n) pour tout n ∈ N. Une certaine fonction F assigne un nombre naturel
à toute suite de nombres naturels de façon à ce que F (x) 6= F (y) pour toutes
suites complètement différentes x, y ; de plus, F ((k, k, . . . )) = k pour tout nombre
naturel k. Démontrer qu’il existe n ∈ N tel que F (x) = x(n) pour toute suite x.

OC585. Soit n ≥ 3 un entier donné. Le nombre 1 est écrit n fois sur un
tableau. Deux seaux initialement vides se trouvent tout près, et nous disposons
d’un stock inépuisable de billes. Et puis, on joue. Un coup consiste à choisir et
effacer deux des nombres au tableau, disons a et b, puis de les remplacer au tableau
par 1 et a+ b ; de plus, on ajoute une bille au premier seau et pgcd(a, b) billes au
deuxième seau. Après un certain nombre de coups, on observe qu’il se trouve s
billes dans le premier seau et t billes dans le deuxième, où s et t sont des entiers
positifs. Déterminer toutes les valeurs possibles du ratio t/s.
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OLYMPIAD CORNER
SOLUTIONS

Statements of the problems in this section originally appear in 2021: 47(10), p. 491–493.

OC556. Find all integer pairs (x, y) that satisfy the equation

7x2 − 4xy + 7y2 = (|x− y|+ 2)3.

Originally 2019 South Africa, Durban, Invitational World Youth Mathematics In-
tercity Competition, Individual Contest, Section B, Problem 2.

We received 3 submissions of which 1 was correct. We present the solution by
UCLan Cyprus Problem Solving Group.

Writing y = x+ d we get

(d+ 2)3 = 7x2 − 4x(x+ d) + 7(x+ d)2 = 10x2 + 10xd+ 7d2

so
4(d+ 2)3 − 28d2 = 40x2 + 40xd = 10(2x+ d)2 − 10d2 .

Thus
5(2x+ d)2 = 2(d+ 2)3 − 9d2 = 2d3 + 3d2 + 24d+ 16 .

Multiplying both sides by 500 we get

(100x+ 50d)2 = (10d)3 + 15(10d)2 + 1200(10d) + 8000 .

We are required to investigate the Diophantine equation

b2 = a3 + 15a2 + 1200a+ 8000 .

It seems that this is quite hard. However, this is an Elliptic curve and there is a
standard algorithm for computing integral points on it. Using the commands

E=EllipticCurve([0,15,0,1200,8000])

E.integral points()

in Sage, we get that the only integral solutions (with positive y) are a = 1, b = 96
and a = 10, b = 150. Since a = 10d is a multiple of 10 we must have d = 1 and
100x+ 50d = 150 giving x = 1. Thus y = x+ d = 2. We also have the symmetric
solution x = 2, y = 1.

OC557. A natural number k is given. For n ∈ N we define fk(n) as the
smallest integer greater than kn such that nfk(n) is a perfect square. Prove that
fk(m) = fk(n) implies m = n.
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Originally 9th Serbian Mathematical Olympiad for high school students, Belgrade,
First Day, Problem 2 proposed by Nikola Petrovic.

We received 4 submissions of which 3 were correct and complete. We present the
solution by Theo Koupelis, Broward College, Pembroke Pines, Florida, USA.

Let fk(n) = nk + an with an ∈ N being the smallest natural number so that
nfk(n) is a perfect square. Then, if we write n = n′b2, we have

fk(n′b2) = n′b2k + an = n′c2,

where n′, b, c ∈ N and n′ is square-free. Therefore an = n′a′n, with a′n ∈ N and
kb2 + a′n = c2. Similarly, if we write m = m′d2, we have

fk(m′d2) = m′kd2 + am = m′`2,

with m′, d, `, am ∈ N and m′ is square-free. Therefore am = m′a′m, with a′m ∈ N
and kd2+a′m = `2.When fk(m) = fk(n) we have n′c2 = m′`2 and thus n′ = m′ = p
and ` = c. Therefore kb2 + a′n = kd2 + a′m = c2.

Then c is the smallest natural number greater than b
√
k and also the smallest

natural number greater than d
√
k. Therefore, we must have |b

√
k − d

√
k| < 1, or

|b− d| < 1√
k
< 1. Thus b = d and m = n.

OC558. Anne consecutively rolls a 2020-sided die with faces labeled from 1
to 2020 and keeps track of the running sum of all her previous dice rolls. She stops
rolling the first time when her running sum is greater than 2019. Let X and Y
be the running sums she is most and least likely to have stopped at with non-zero
probability, respectively. What is the ratio between the probabilities of stopping
at Y to stopping at X?

Originally April 2021 Stanford Math Tournament, Combinatorics test, Problem 7.

We received 3 correct submissions. We present the solution by UCLan Cyprus
Problem Solving Group.

For k = 0, 1, 2, . . . , 2020, we denote by pk the probability that after some rolls we
have a running sum equal to k. We set p0 = 1 and notice that p1 = 1

2020 .

For k = 1, 2, . . . , 2019, there is a one to one correspondence between sequences of
rolls having running sum k and sequences of rolls having running sum k+ 1, with
the last roll being greater than 1. The correspondence is given by (r1, . . . , ri) 7→
(r1, . . . , ri−1, ri + 1). Both such sequences have equal probability of occurring.

The only other way to get a running sum of k + 1 is for the last roll to be equal
to 1. From the above, it follows that

pk+1 = pk +
pk

2020
=

2021

2020
pk (1)

for each k = 1, 2, . . . , 2019.
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For k = 2020, 2021, . . . , 4039, we denote by qk the probability that we have a
running sum equal to k, and all previous running sums are less than or equal to
2019. Observe now that we can stop at k, for k = 2020, . . . , 4039, if we first reach
a running sum of l = k− 2020, . . . , 2019, and then roll k− l. The probability that
this happens is

qk =
p(k−2020)

2020
+ · · ·+ p2019

2020
.

The formula above shows that the largest q is q2020 and smallest q is q4039. Hence,
the most likely running sum to have stopped at is X = 2020, and the least likely
is Y = 4039. Also, we observe that the probabilities p2020 and q2020 are equal.
Using (1) we get that the ratio

q4039

q2020
=
p2019

2020
× 1

q2020
=
p2019

p2020
× 1

2020
=

2020

2021
× 1

2020
=

1

2021
.

OC559. A rectangle with side lengths 1 and 3, a square with side length 1,
and a rectangle R are inscribed inside a larger square as shown. The sum of all
possible values for the area of R can be written in the form m

n , where m and n are
relatively prime positive integers. What is m+ n?

Originally Fall 2021 AMC 10B, Problem 25.

We received 6 correct submissions. We present two solutions.

Solution 1, by UCLan Cyprus Problem Solving Group.

We use the notation in the figure below. If ∠BFE = ϑ and ∠DHI = ϕ, then
all blue angles are easily seen to be equal to ϑ, and all red angles are equal to ϕ.
Many segment lengths are given in the figure below.

Since ABCD is a square, then

3 cosϑ+ sinϑ = BC = AB = 4 sinϑ+ 2 cosϑ
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giving tanϑ = 1
3 . This gives

sinϑ =

 
tan2 ϑ

1 + tan2 ϑ
=

1√
10

and cosϑ =

 
1

1 + tan2 ϑ
=

3√
10
.

So the square has side length

3 cosϑ+ sinϑ =
10√
10
.

Looking at the sides AD and CD, it follows that

x cosϕ+ y sinϕ =
6√
10

and
(x

3
+ y
)

cosϕ+ x sinϕ =
7√
10
. (1)

Note that ZL = x sinϕ = cosϑ = 3√
10

so (1) becomes

x cosϕ =
6− 3y/x√

10
and

(x
3

+ y
)

cosϕ =
4√
10
. (2)

We get

4x =

Å
6− 3y

x

ã(x
3

+ y
)

=⇒ 12x2 = 6x2 + 15xy− 9y2 =⇒ 2x2 − 5xy+ 3y2 = 0
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This gives (x− y)(2x− 3y) = 0 and so y = x or y = 2x/3.

In the first case we have x cosϕ = 3√
10

and since also x sinϕ = 3√
10

, then tanϕ = 1.

Thus x = y = 3√
5

and the area of rectangle R is xy = 9
5 .

In the second case we have x cosϕ = 4√
10

and since also x sinϕ = 3√
10

, then

tanϕ = 3
4 . Then cosϕ = 4

5 and sinϕ = 3
5 giving x = 5√

10
and y = 10

3
√

10
. So in

this case the area of rectangle R is 5
3 .

Now the sum of these two values is 9
5 + 5

3 = 52
15 . Since 15,52 are relatively prime,

then m+ n = 52 + 15 = 67.

Solution 2, by Oliver Geupel.

Let us use notations as shown in the diagram below, and let a = PH and b = PE.
We have a+ 3b = AF +FB = AE+EK +KD = 3a+ 2b+ a; whence b = 3a and
a = 1√

10
.

Applying coordinates with origin A and base vectors
−−→
FB and

−−→
KD of length a, we

obtain G = (10, 3), H = (1, 6), and I = (4, 7). Let L = (x, 10) and M = (10, y).
Since N lies on GH, there exists a t ∈ R such that

(14− x, y − 3) = ~I + ~M − ~L = ~N = t ~G+ (1− t) ~H = (1 + 9t, 6− 3t).

This implies that x = 13− 9t and y = 9− 3t. Also

0 =
−→
LI · −−→LM = (4− x,−3) · (10− x, y − 10) = 81

Å
t− 5

9

ãÅ
t− 2

3

ã
.

It is straightforward to verify that for t ∈
{

5
9 ,

2
3

}
the quadrilaterals ILMN are

rectangles with N ∈ GH. For t = 5
9 , we obtain L = (8, 10) and M =

(
10, 22

3

)
.

Since the base vectors have length a, the area of rectangle R is IL · LM = 5√
10
·

√
10
3 = 5

3 . For t = 2
3 , we find L = (7, 10), M = (10, 7), and IL ·LM = 3√

5
· 3√

5
= 9

5 .

Since the sum of the areas is 5
3 + 9

5 = 52
15 , we finally obtain m = 52, n = 15, and

m+ n = 67.
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OC560. In the figure below, points A, C are on ray OM and B, D are on
ray ON . It is given that OA = 6cm, OD = 16cm and ∠NOM = 20◦. What is
the minimum length, in cm, of AB +BC + CD?

Originally 2019 South Africa, Durban, Invitational World Youth Mathematics In-
tercity Competition, Team Contest, Problem 3.

We received 10 submissions of which 9 were correct. We present a typical solution.

It is helpful to think of OM and ON as two mirrors. Let A′ be the reflection
point of A about ON and D′ the reflection point of D about OM . A′D′ intersects
OM at C ′ and ON at B′. We have AB +BC +CD = A′B +BC +CD′ because
AB = A′B and CD = CD′. Since A′D′ is a straight segment we have that
A′B + BC + CD′ ≥ A′D′. Therefore A′D′ is the minimum of AB + BC + CD
as B and C vary. Using the Law of Cosines in 4A′OD′ we calculate A′D′2 =
162 + 62 − 2× 16× 6× cos 60◦ = 196. The minimum of AB +BC +CD is 14 cm.
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FOCUS ON...
No. 51

Michel Bataille

Linear algebra (II)

Introduction

In this number, we continue to present examples of problems involving linear
algebra. All of them will be connected with eigenvalues. After the usual reduced
forms of a square matrix, we will consider some interventions of the characteristic
and minimum polynomials in the solutions of problems.

Reduction to a diagonal or triangular matrix

The conditions insuring that a given n× n matrix is similar to a diagonal one are
well-known. The following exercise gives the opportunity to review them.

Let u, v, w be nonzero real numbers and

A = −2

3

Ñ
−1/2 v/u w/u
u/v −1/2 w/v
u/w v/w −1/2

é
.

Show that A is diagonalizable.

A direct calculation (left to the reader) shows that the characteristic polynomial
det(λI3 − A) is independent of u, v, w and equal to (λ + 1)(λ − 1)2, hence the
eigenvalues are −1 and 1 with respective algebraic multiplicity 1 and 2. Thus,
A will be diagonalizable if (and only if) the eigenspace E1 associated with the
eigenvalue 1 is of dimension 2. Now, if X = (x y z), the equation (A− I3)XT = 0
is equivalent to ux+ vy + wz = 0, hence dimE1 = 2 and A is diagonalizable.

Note that since A = P diag(1, 1,−1)P−1 for some invertible matrix P we have
A2 = I3, a result which was not obvious a priori. It is also worth remarking that
if u2 = v2 = w2, then in the Euclidean space R3, the vector (1/u 1/v 1/w)T (which
spans the eigenspace associated with −1) and the vector (u v w)T (orthogonal to
E1) are collinear, so that A represents the reflection in the plane E1.

The reduction of a matrix to a diagonal form has numerous applications. Perhaps
the more classical one is the calculation of the powers of the matrix. For a simple
example, we refer the reader to the published solution to problem 3390 [2008 :
486 ; 2009 : 521].

The following problem set in the December 2013 issue of The American Mathe-
matical Monthly offers an application to the computation of an inverse:

Let n be a positive integer, let x be a real number, and let B be the
n-by-n matrix with 2x in all diagonal entries, 1 in all sub- and super-
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diagonal entries, and 0 in all other entries. Compute the inverse, when
it exists, of B as a function of x.

We propose a solution different from the featured one. Some trigonometric iden-
tities will be required and we leave their proofs to the reader.

Let A = (2x+ 2)In −B. From the identity

− sin(n− 1)θ + 2 sin(nθ)− sin(n+ 1)θ = 2(1− cos θ) sinnθ (θ ∈ R, n ∈ N),

we readily deduce that the column vector Ω = (sin θ sin 2θ · · · sinnθ)T sat-
isfies AΩ = 2(1− cos θ)Ω provided that sin(n+ 1)θ = 0.

It follows that for k ∈ {1, 2, . . . , n},

BΩk = 2(x+ cos θk)Ωk,

where θk = kπ
n+1 and Ωk = (sin θk sin 2θk · · · sinnθk)T . Thus, the real num-

bers 2ρk = 2(x + cos θk), k = 1, 2, . . . , n are n distinct eigenvalues of B and B
is diagonalizable: B = PDP−1 where P is the matrix whose column vectors are
Ω1, Ω2, · · · Ωn and D = diag(2ρ1, 2ρ2, · · · , 2ρn). In consequence, B is invertible
if and only if x 6= − cos θk for k ∈ {1, 2, . . . , n}.
Using the formulas

n∑
j=1

sin2(jθk) =
n+ 1

2
and

n∑
j=1

sin(jθr) sin(jθs) = 0

for k, r, s ∈ {1, 2, . . . , n}, r 6= s, we obtain PTP = n+1
2 In, that is, P−1 = 2

n+1P
T .

Now, B−1 = 1
n+1 P ·diag(ρ−1

1 , ρ−1
2 , · · · , ρ−1

n )·PT = (br s) where for r, s ∈ {1, 2, . . . , n},

br s =
1

n+ 1

n∑
j=1

sin
Ä
jrπ
n+1

ä
sin
Ä
jsπ
n+1

ä
x+ cos

Ä
jπ
n+1

ä .

A simple condition allows a reduction to a triangular form: if F is a field and
A ∈ Mn(F), then A is similar (over F) to a triangular matrix T if and only if all
the roots of the characteristic polynomial are in F. If this is the case, the principal
diagonal of T is formed by a list of all these roots.

Here is an easy application:

Let A ∈ Mn(C) be such that Ap = On for some positive integer p.
Evaluate det(A+ In).

Let λ be an eigenvalue of A and X be an associated eigenvector. From AX = λX,
we readily deduce that ApX = λpX so that λpX = 0 and therefore λ = 0 (since
X 6= 0). It follows that A = PTP−1 where T is triangular with 0 as each diagonal
entry.
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Then, from A+In = P (T +In)P−1 we deduce that det(A+In) = det(T +In) = 1.

We conclude this section with a problem (proposed in The American Mathematical
Monthly in 2002, here slightly reworded) in which both the diagonal and triangular
reduced forms are used:

Let A,B ∈ M2(C) and let C = AB − BA. Prove that if CA = AC
and CB = BC, then C = O2.

We shall use the following remark: if M,N,P are in M2(C) and P is invertible,
then MN = NM if and only if (P−1MP )(P−1NP ) = (P−1NP )(P−1MP ).

Assume that C has two distinct eigenvalues λ1, λ2. Then C = PDP−1 where

D =

Å
λ1 0
0 λ2

ã
and P is invertible. Since CA = AC and CB = BC, the above

remark shows that A′ = P−1AP and B′ = P−1BP satisfy DA′ = A′D and
DB′ = B′D. But then A′ and B′ must be diagonal matrices (easily checked),
hence A′B′ = B′A′ and therefore AB = BA, that is, C = O2, a contradiction
with the assumption about C.

In consequence, C must have a unique eigenvalue λ0 (with algebraic multiplicity
2). Then we have λ0 = 0 (since tr (C) = 0) and C = QTQ−1 where T is a

triangular matrix, say,

Å
0 t
0 0

ã
. If t 6= 0, then the matrices A′′ = Q−1AQ and

B′′ = Q−1BQ satisfy TA′′ = A′′T and TB′′ = B′′T , hence A′′ =

Å
α β
0 α

ã
and

B′′ =

Å
γ δ
0 γ

ã
for some complex numbers α, β, γ, δ. But then, A′′B′′ = B′′A′′ and

AB = BA again, contradicting t 6= 0. Thus, we must have t = 0 and therefore
C = O2.

The Cayley-Hamilton theorem

We offer two interventions of this important, easily stated theorem: If A ∈Mn(F)
and det(λIn −A) = λn + an−1λ

n−1 + · · ·+ a1λ+ a0, then we have

An + an−1A
n−1 + · · ·+ a1A+ a0In = On.

First, we consider problem 4145 [2016 : 221 ; 2017 : 224]:

Prove that the system

A3 +A2B +AB2 +ABA =

1 2 3
0 1 2
0 0 1



B3 +B2A+BA2 +BAB =

−1 0 3
0 −1 0
0 0 −1


has no solutions in the set of 3× 3 matrices over complex numbers.
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We propose a variant of solution: Assume that such matrices A,B exist. Then,
since

(A+B)3 = (A+B)(A2 +AB +BA+B2)

= (A3 +A2B +ABA+AB2) + (BA2 +BAB +B2A+B3),

we obtain

(A+B)3 =

0 2 6
0 0 2
0 0 0

 (1).

Now, let λ be any complex eigenvalue of A + B. Then λ3 is an eigenvalue of
(A + B)3, hence λ3 = 0 (by (1)) that is, λ = 0. Thus, A + B has no other
eigenvalue than 0 and its characteristic polynomial must be λ3. From the Cayley-
Hamilton theorem, we deduce (A + B)3 = O3, in contradiction with (1). The
required result follows.

Our second example, proposed in 2008 in The Mathematical Gazette, has a geo-
metric flavor:

Let a and b be linearly independent column vectors in R3. Determine
a real square root of bat−abt; that is, find a 3× 3 matrix A with real
entries so that A2 = bat − abt. (Here, xt denotes the transpose of x.)

There are two solutions, namely

A =
±1

m
√

2m
(bat − abt)(mI3 − (bat − abt))

where m =
(
(ata)(btb)− (atb)2

)1/2
.

(Note that (ata)(btb) − (atb)2 > 0 follows from Cauchy-Schwarz inequality and
the independence of a and b.)

We denote by C the 3 × 3 matrix bat − abt and by c = (c1 c2 c3)t the cross
product a × b. Note that c21 + c22 + c23 = ctc = m2. The expression of C as
a function of c1, c2, c3 is readily obtained as well as its characteristic polynomial
det(xI3−C) = x3 +m2x. Thus, C3 +m2C = 0 (by the Cayley-Hamilton theorem)
and we have

(C2 −mC + 2m2I3)(C +mI3) = 2m3I3 (2).

Now, let A ∈ M3(R) be such that A2 = C and let α, β, γ be the (complex)
eigenvalues of A. Then α2, β2, γ2 are the complex eigenvalues 0, im,−im of C.
Thus, the characteristic polynomial of Amust be of the form χ(x) = x(x−ω)(x−ω)
with ω2ω2 = m2 and ω2 +ω2 = 0, that is, ωω = m and ω+ω = ±

√
2m. It follows

that χ(x) = x(x2 ±
√

2mx+m).
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Thus, A3 ±
√

2mA2 +mA = 0 or (since A2 = C), A(C +mI3) = ±
√

2mC. Using
(2), this yields

A = ±
√

2mC · 1

2m3
(C2 −mC + 2m2I3) =

±1

m2
√

2m
(−m2C −mC2 + 2m2C)

=
±1

m
√

2m
C(mI3 − C).

Conversely,
Ä
± 1
m
√

2m
C(mI3 − C)

ä2
= C is easily checked.

The minimum polynomial

Recall that the minimal polynomial µ(x) of A (A ∈ Mn(F)), is the monic poly-
nomial of least degree dividing all the polynomials p(x) such that p(A) = On
(µ(x), p(x) ∈ F[x]).

In particular, µ(x) divides the characteristic polynomial χ(x). A nice application
is problem 4229 [2017 : 102 ; 2018 : 128]:

Let n be an integer with n ≥ 2 and let p be a prime number. Consider
an n×n matrix X over Zp with Xp = In. Prove that (X−In)n = On.

Since Xp − In = On, the minimum polynomial of X is a divisor of xp − 1 =
(x − 1)p, hence is of the form (x − 1)k for some integer k with 1 ≤ k ≤ p.
Now, the characteristic polynomial of X, which is of degree n, is divisible by the
minimum polynomial, which is of degree k. Thus, we must have k ≤ n and since
(X − In)k = On, we deduce that (X − In)n = On.

Another recent example is problem 4446 [2019 : 266 ; 2019 : 578]:

Let n be a prime number greater than 4 and let A ∈Mn−1(Q) be such
that An = In−1. Evaluate

det(An−2 + 2An−3 + 3An−4 + · · ·+ (n− 2)A+ (n− 1)In−1)

in terms of n.

Let

B = An−2 + 2An−3 + 3An−4 + · · ·+ (n− 2)A+ (n− 1)In−1

and let

p(x) = xn−1 + xn−2 + · · ·+ x+ 1.

Since On−1 = An − In−1 = (A − In−1)p(A), the minimum polynomial µ(x) of
A divides (x − 1)p(x). Recalling the well-known fact that p(x) is an irreducible
polynomial of Q[x] (n being a prime) and because 1 ≤ degree(µ(x)) ≤ n − 1, we
must have either µ(x) = x− 1 or µ(x) = p(x).

In the former case, A = In−1 and B = (1 + 2 + · · ·+ (n− 1))In−1 = n(n−1)
2 In−1.

Thus, det(B) =
Ä
n(n−1)

2

än−1
.
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We show that in the latter case, det(B) = nn−2. First, we observe that since µ(x)
divides the characteristic polynomial χ(x) = det(xIn−1 − A) of A we must have
χ(x) = µ(x) = p(x). Therefore, if w = exp(2πi/n), the complex eigenvalues of
A are the distinct roots w,w2, . . . , wn−1 of p(x) and A is diagonalizable (over C):
A = PDP−1 for some P ∈ GLn−1(C) and where D = diag(w,w2, . . . , wn−1). It
follows that

B = P (Dn−2 + 2Dn−3 + · · ·+ (n− 2)D + (n− 1)In−1)P−1

= Pdiag(q(w), q(w2), . . . , q(wn−1))P−1,

where q(x) = xn−2 + 2xn−3 + · · · + (n − 2)x + n − 1. As a result, we have

det(B) =
n−1∏
k=1

q(wk).

Now, we have q(x) = xn−2p′(1/x) where p′ is the derivative of p. With the help

of p(x) =
xn − 1

x− 1
, we obtain

p′(x) =
(n− 1)xn − nxn−1 + 1

(x− 1)2
.

Using wn = 1, we easily deduce that q(wk) = n
1−wk and therefore

det(B) =
nn−1

p(1)
=
nn−1

n
= nn−2.

To conclude, we recall an important result about the minimum polynomial: if
A ∈ Mn(F), then A is diagonalizable over F if and only if the roots of its mini-
mum polynomial are all in F and are simple roots. These roots are the distinct
eigenvalues of A.

Here is an example of application:

Let A ∈ Mn(R) satisfy the property AT = −A. Prove that A is
diagonalizable over C.

The matrix A2 = −AAT is symmetric with real entries, hence is diagonalizable
over R. Moreover its eigenvalues are nonpositive: indeed, if −AATX = λX where
λ ∈ R and X ∈Mn,1(R), with X 6= 0, then

λXTX = −(ATX)TATX,

hence λ ≤ 0 since XTX > 0 and (ATX)TATX ≥ 0. Thus, the minimum polyno-
mial µ2(x) of A2 writes as µ2(x) =

∏k
j=1(x+ a2

j ) for some real numbers a1, . . . , ak

satisfying 0 ≤ a1 < a2 < · · · < ak and
∏k
j=1(A2 + a2

jIn) = On.

If a1 > 0, then
k∏
j=1

(A− iajIn)(A+ iajIn) = On,
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hence the minimum polynomial µ1(x) of A divides
∏k
j=1(x − iaj)(x + iaj) and

therefore all its complex roots are simple. Otherwise, we have A2q(A) = On
where q(A) =

∏k
j=2(A2 + a2

jIn). Let Z ∈ Mn,1(C) be such that A2Z = 0. By

conjugation, we have AZ = AZ, hence

(AZ)TAZ = Z
T
ATAZ = −ZTA2Z = 0.

It follows that AZ = 0. In particular, for any X ∈Mn,1(C) we obtain Aq(A)X = 0
(since A2q(A)X = 0), hence Aq(A) = On. As a result, µ1(x) divides

x
k∏
j=2

(x− iaj)(x+ iaj).

Again, the complex roots of µ1(x) are simple. The result follows.

Exercises

1. Let A ∈ Mn(F) have n distinct eigenvalues in F and let M ∈ Mn(F) be such
that MA = AM . Prove that M = p(A) for some polynomial p(x) ∈ F[x] .

2. Let A ∈ M3(R) satisfying A 6= O3 and A3 = −A. Find the minimum polyno-
mial of A.

3. Let m,n, p be positive integers with p ≥ 2 and let A,B ∈Mn(C) be such that
Am = In and BA = ABp. Show that B is diagonalizable.
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An Amazing Pattern involving
Lucas Sequences

Hajime Katsumoto

The well-known Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . is defined by the initial
conditions that the first two terms are 1s, and the recurrence relation that from the
third term on, each is the sum of the preceding two terms. Thus 1+1=2, 1+2=3,
2+3=5, 3+5=8, and so on. If we keep the recurrence relation, but allow the first
two terms to be arbitrary positive integers, then we have a Lucas sequence.

For any positive integer n, define m(n) to be the smallest positive integer which
does not occur in any Lucas sequence in which the first term is at most n and the
second term is at most the first term.

For n = 1, the first two terms must be (1,1). We have the Fibonacci sequence,
and m(1) = 4.

For n = 2, the first two terms may be (1,1), (2,1) or (2,2). In addition to the
Fibonacci sequence, we also have the Lucas sequences 2, 1, 3, 4, 7, 11, . . . and 2,
2, 4, 6, 10, . . . . Hence m(2) = 9.

The following table gives some empirical data.

n m(n) n m(n) n m(n) n m(n) n m(n) n m(n)

1 4 11 148 21 496 31 1046 41 1868 51 2758
2 9 12 169 22 551 32 1101 42 1957 52 2847
3 17 13 203 23 606 33 1156 43 2046 53 2936
4 25 14 237 24 661 34 1245 44 2135 54 3025
5 38 15 271 25 716 35 1334 45 2224 55 3169
6 51 16 305 26 771 36 1423 46 2313 56 3313
7 64 17 339 27 826 37 1512 47 2402 57 3457
8 85 18 373 28 881 38 1601 48 2491 58 3601
9 106 19 407 29 936 39 1690 49 2580 59 3745
10 127 20 441 30 991 40 1779 50 2669 60 3889

This pattern does not seem remarkable, but wait! Define ∆(n) = m(n)−m(n−1).
We take m(0) = 1 because for n = 0, the first two terms are 0s, and the sequence
generated is the all-0 sequence, even though it is not a Lucas sequence by our
definition. We have the following table.
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n ∆(n) n ∆(n) n ∆(n) n ∆(n) n ∆(n) n ∆(n)

1 3 11 21 21 55 31 55 41 89 51 89
2 5 12 21 22 55 32 55 42 89 52 89
3 8 13 34 23 55 33 55 43 89 53 89
4 8 14 34 24 55 34 89 44 89 54 144
5 13 15 34 25 55 35 89 45 89 55 144
6 13 16 34 26 55 36 89 46 89 56 144
7 13 17 34 27 55 37 89 47 89 57 144
8 21 18 34 28 55 38 89 48 89 58 144
9 21 19 34 29 55 39 89 49 89 59 144
10 21 20 34 30 55 40 89 50 89 60 144

These values are the Fibonacci numbers starting with 3 and 5, each of which
appears once. They are followed by two appearances of 8, three appearances of
13, five appearances of 21, eight appearances of 34, thirteen appearances of 55,
twenty-one appearances of 89, and so on.

The pattern is amazing! Can anyone prove that it will continue?
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PROBLEMS

Click here to submit problems proposals as well as solutions, comments
and generalizations to any problem in this section.

To facilitate their consideration, solutions should be received by July 15, 2022.

4741. Proposed by Alexander Bloom.

A large pond has 100 lily pads lying in a straight line, numbered consecutively 1
to 100, with a frog making jumps between adjacent lily pads. At any given lily
pad x, 1 ≤ x ≤ 99, the probability of the frog moving forwards to the next lily

pad is
1

x
and the probability of retreating to the previous lily pad is

x− 1

x
. For

some y, if the frog starts on lily pad y, then the probability that the frog reaches

lily pad 100 without ever touching lily pad y − 1 can be written as
9!

10 · 98!
. Find

the value of y.

4742. Proposed by Michel Bataille.

Let m,n be non-negative integers. Prove that

n∑
k=0

Ç
2n+ 2m

k + 2m

åÇ
2n− k
k

å
4−k =

Ç
4n+ 4m

2n

å
4−n.

4743. Proposed by Cristian Chiser.

Let ABC be an acute triangle. Suppose that D, E, F are points on sides BC, CA
and AB, respectively, such that FD is perpendicular to BC, DE is perpendicular
to CA, and EF is perpendicular to AB. Let a, b, c be the side lengths of the
triangle ABC and let RDEF be the circumradius of triangle DEF . Show that

RDEF =
a+ b+ c

9

if and only if triangle ABC is equilateral.

4744. Proposed by Olimjon Jalilov.

Let f : R 7→ R be a twice differentiable function. Suppose f(0) = 0. Prove that
the equation

tan2 x · f ′′(x) + (tan3 x+ 4 tanx)f ′(x) + 2f(x) = 0, x 6= ±π
2

has at least one root in the open interval (−π, π).
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4745. Proposed by Marius Stănean.

Let a, b, c be nonnegative real numbers such that ab+ bc+ ca = 4. Prove that

(
a2 + b2 + c2 + 1

)Å 1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2

ã
≥ 45

8
.

When does equality hold?

4746. Proposed by George Stoica.

Let An be the n× n matrix with elements aij =

Ç
n+ 1

2i− j

å
, i, j = 1, . . . , n. Prove

that detAn = 2n(n+1)/2.

4747. Proposed by Stanescu Florin.

Determine all the functions f : R→ R such that

f(x2f(x) + f(y)) = f(f(x3)) + y

for all x, y ∈ R.

4748. Proposed by Mihaela Berindeanu.

Let Γ be the circumcircle of a given triangle ABC, and define T to be the inter-
section of the tangents to Γ at B and at C, S to be the second point where Γ
intersects AT , and Â to be the reflection of the vertex A in the line BC. Prove
that the line ÂS intersects the side BC at its midpoint.

4749. Proposed by Julie Z.Y. Dong and Clarence C.Y. Kwan.

For an arbitrary, monotonically increasing, strictly concave, and twice differen-
tiable function f(x) of a continuous variable x, defined for h ≤ x ≤ k, prove
that

1

b− a

∫ b

x=a

f(x)dx >
1

k − h

∫ k

x=h

f(x)dx, if a+ b > h+ k,

where h < a < b < k are arbitrary constants.

4750. Proposed by Nguyen Viet Hung.

Given a triangle ABC with orthocentre H, let M be any point inside the triangle
and let D,E, F be respectively projections of M onto the sides BC,CA,AB. De-
note by S, Sa, Sb, Sc the areas of triangles ABC,HBC,HCA,HAB, respectively.
Prove that

(Sb + Sc)
−−→
MD + (Sc + Sa)

−−→
ME + (Sa + Sb)

−−→
MF = S · −−→MH.
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Cliquez ici afin de proposer de nouveaux problèmes, de même que pour
offrir des solutions, commentaires ou généralisations aux problèmes

proposés dans cette section.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au plus tard le 15 juillet 2022.

4741. Soumis par Alexander Bloom.

Un grand étang contient 100 nénuphars positionnés de sorte à former une ligne
droite, ce qui permet de leur assigner un numéro de 1 à 100. Une grenouille
bondit entre des nénuphars adjacents. Étant donné un nénuphar x, 1 ≤ x ≤ 99, la
probabilité que la grenouille bondisse sur le nénuphar suivant est 1

x et la probabilité
qu’elle bondisse plutôt sur le nénuphar précédant est x−1

x . Pour un y donné, si
la grenouille se trouve initialement sur le nénuphar y, alors la probabilité qu’elle
atteigne le nénuphar 100 sans jamais s’être rendu sur le nénuphar y − 1 peut être

écrite comme suit :
9!

10 · 98!
. Trouvez la valeur de y.

4742. Soumis par Michel Bataille.

Soit m et n des entiers non négatifs. Montrez que

n∑
k=0

Ç
2n+ 2m

k + 2m

åÇ
2n− k
k

å
4−k =

Ç
4n+ 4m

2n

å
4−n.

4743. Soumis par Cristian Chiser.

Soit ABC un triangle aigu. Supposons queD, E et F soit les points respectivement
inscrits sur les côtés BC, CA et AB tel que FD est perpendiculaire à BC, DE est
perpendiculaire à CA et EF est perpendiculaire à AB. Soit a, b et c la longueur
des côtés du triangle ABC et soit RDEF le rayon du cercle circonscrit au triangle
DEF . Montrez que

RDEF =
a+ b+ c

9

si et seulement si le triangle ABC est équilatéral.

4744. Soumis par Olimjon Jalilov.

Soit f : R 7→ R une fonction deux fois dérivable. Supposons que f(0) = 0. Montrez
que l’équation

tan2 x · f ′′(x) + (tan3 x+ 4 tanx)f ′(x) + 2f(x) = 0, x 6= ±π
2

possède au moins une racine dans l’intervalle ouvert (−π, π).
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4745. Soumis par Marius Stănean.

Soit a, b et c des nombres réels non négatifs vérifiant ab + bc + ca = 4. Montrez
que (

a2 + b2 + c2 + 1
)Å 1

a2 + b2
+

1

b2 + c2
+

1

c2 + a2

ã
≥ 45

8
.

Sous quelles conditions a-t-on l’égalité ?

4746. Soumis par George Stoica.

Soit An une matrice n× n dont les éléments sont aij =

Ç
n+ 1

2i− j

å
, i, j = 1, . . . , n.

Montrez que detAn = 2n(n+1)/2.

4747. Soumis par Stanescu Florin.

Déterminez toutes les fonctions f : R→ R vérifiant

f(x2f(x) + f(y)) = f(f(x3)) + y

pour tout x, y ∈ R.

4748. Soumis par Mihaela Berindeanu.

Soit Γ le cercle circonscrit du triangleABC. Définissons T comme étant l’intersection
des tangentes à Γ en B et en C. De plus, définissons S comme étant le second
point où Γ rencontre AT . Soit Â la réflexion du sommet A par rapport à la droite
BC. Montrez que la droite ÂS rencontre le côté BC en son point milieu.

4749. Soumis par Julie Z.Y. Dong et Clarence C.Y. Kwan.

Étant donné une fonction quelconque f(x) d’une variable continue x qui est mono-
tone croissante, strictement concave, deux fois dérivable et qui est définie pour
h ≤ x ≤ k, montrez que

1

b− a

∫ b

x=a

f(x) dx >
1

k − h

∫ k

x=h

f(x) dx, si a+ b > h+ k,

où h < a < b < k sont des constantes arbitraires.

4750. Soumis par Nguyen Viet Hung.

Soit un triangle ABC d’orthocentre H. Soit M un point quelconque de l’intérieur
de ce triangle. Soit encore D,E, F les projections de M sur les côtés BC,CA et AB
respectivement. Notons par S, Sa, Sb et Sc l’aire des trianglesABC,HBC,HCA,HAB,
respectivement. Montrez que

(Sb + Sc)
−−→
MD + (Sc + Sa)

−−→
ME + (Sa + Sb)

−−→
MF = S · −−→MH.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider for
publication new solutions or new insights on past problems.

Statements of the problems in this section originally appear in 2022: 47(10), p. 508–511.

4691. Proposed by Michel Bataille.

Let ABC be a triangle inscribed in a circle Γ and let U1, U2, U3 be distinct points
of Γ. Let σi be the Simson line of Ui (i = 1, 2, 3) and let Vk be the point of
intersection of σi and σj ({i, j, k} = {1, 2, 3}). Given that ∆V1V2V3 is congruent
to ∆U1U2U3, prove that ∆V1V2V3 and ∆U1U2U3 are symmetrical about a point
and identify this point.

We received 5 solutions, all of which were correct. Four of them took Γ to be the
unit circle and used complex numbers to represent the points, but we feature the
solution that avoided the use of coordinates by Theo Koupelis with details added
by the editor.

We base the proof on three nineteenth century theorems, all of which can be found
in geometry texts such as Advanced Euclidean Geometry by Roger A. Johnson, a
Dover Reprint (1960).

Theorem 1: Given points Q1 and Q2 on the circumcircle (O) of 4ABC, the angle
between their corresponding Simson lines is equal to half of the central angle
∠Q1OQ2. [Johnson, paragraph 326, Cor. 1, p. 207]

Theorem 2: If H is the orthocenter, and Q a point on the circumcircle of 4ABC,
then the Simson line of Q bisects the segment HQ. [Johnson, paragraph 327, p.
207]

Theorem 3: Given a triangle XY Z with circumcenter O′ and a point S on its
side Y Z there is a unique triangle SPT directly similar to XY Z and inscribed
in it with P the point where the circle SZO′ again meets XZ, and T the point
where the circle Y SO′ again meets XY ; moreover, the unique smallest inscribed
triangle that is directly similar to XY Z occurs when S is the midpoint of Y Z (and
thus P and T the midpoints of their respective sides). [A special case of Johnson,
paragraphs 188b and 190b, pp. 134-136]

From Theorem 1 we deduce that for any triple of points U1, U2, U3 on Γ, the
triangle V1V2V3 formed by the corresponding Simson lines is directly similar to
∆U1U2U3 (because ∠U1U3U2 = 1

2∠U1OU2 = ∠V1V3V2, and so on). We are given,
however, that the two triangles are congruent, and thus we know that they are
directly congruent, with

U1U2 = V1V2, U1U3 = V1V3, and U2U3 = V2V3.
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Let P, T, S be the midpoints of HU1, HU2, HU3, respectively. Then in triangle
HU1U2 we have PT parallel to the base U1U2 and PT = 1

2U1U2, and similarly
for TS and SP. That is, 4PTS is similar to 4U1U2U3 with sides parallel to the
corresponding sides of 4U1U2U3 and half as long. But from Theorem 2 we have

P ∈ V2V3, T ∈ V3V1, S ∈ V1V2.

Furthermore, from the congruency between triangles U1U2U3 and V1V2V3, we get
that 4PTS is not only inscribed in 4V1V2V3, but it is directly similar to it,
and the lengths of its sides are equal to half of the lengths of the corresponding
sides of 4V1V2V3. From Theorem 3 it follows that the vertices of 4PTS are the
midpoints of the sides of 4V1V2V3. Therefore, PT ‖ V1V2 ‖ U1U2, and similarly
PS ‖ V1V3 ‖ U1U3, and TS ‖ V2V3 ‖ U2U3. Thus the quadrilaterals V1V2U1U2,
V2V3U2U3, and V3V1U3U1 are parallelograms, and their diagonals are concurrent
at a point K. Consequently, the two triangles U1U2U3 and V1V2V3 are related by a
reflection in K. Because P is the midpoint of V2V3, this reflection must interchange
P with the midpoint P ′ of U2U3. Thus, given ∆ABC with points U1, U2, U3 on
its circumcircle, we define P to be the midpoint of the segment joining H to U1,
in which case the fixed point K is the midpoint of the segment joining P to the
midpoint of U1U2.

Editor’s comments. Given ∆ABC with points U1 and U2 on its circumcircle,
there is a unique point U3 on the circumcircle for which the triangle formed by
the corresponding Simson lines is directly congruent to ∆U1U2U3. According to
[Johnson, paragraph 326, Cor. 3, p. 207], the construction of U3 consists of
dropping a perpendicular from a vertex, say B, to the line U1U2; U3 is then the
point where its isogonal (that is, its reflection in the bisector of ∠ABC) again
meets the circumcircle.
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4692. Proposed by Todor Zaharinov.

Let a, b and c be nonzero real numbers such that a3 + b3 + c3 = 0. Find the
minimum possible value of

(a+ b+ c)

Å
1

a
+

1

b
+

1

c

ã
and determine where the minimum holds.

We received 12 submissions, all correct. We present the solution by Theo Koupelis.

Clearly, the numbers a, b, c cannot be all positive or all negative. Without loss of
generality, let a, b > 0 and c = −(a3 + b3)1/3 < 0. We set x = a+ b, y = ab and

f := (a+ b+ c)

Å
1

a
+

1

b
+

1

c

ã
=
î
x− (x3 − 3xy)1/3

ó ïx
y
− 1

(x3 − 3xy)1/3

ò
.

Note that
x3 − 3xy = (a+ b)3 − 3ab(a+ b) = a3 + b3

and x2 > 4y. Setting x2 = k3y with k ≥ 41/3, we have

f(k) =
î
k − (k3 − 3)1/3

ó ï
k2 − 1

(k3 − 3)1/3

ò
We show that f(k) is an increasing function. Indeed,

f ′(k) =
3

(k3 − 3)4/3

î
k2(k3 − 3)4/3 − (k3 − 2) · k(k3 − 3)2/3 + 1

ó
.

The expression in brackets above can be considered as a quadratic in k(k3−3)2/3.
Since k3 ≥ 4, we have

f ′(k) > 0⇐⇒ 2k(k3 − 3)2/3 > (k3 − 2) + k
»
k(k3 − 4).

Raising to the third power and simplifying, we get the equivalent expression

4k3(k3 − 3)2 + 8 > 4k
»
k(k3 − 4)(k3 − 3)(k3 − 1),

which after squaring becomes

2k3(k3 − 4)(k3 − 2) + 2k3 + 1 > 0,

which is obvious. Therefore,

fmin(k) = f(41/3) = (41/3 − 1)(42/3 − 1) = 5− 24/3 − 22/3.

The minimum occurs when (a, b, c) = (z, z,−21/3z) (where z is a nonzero real
number) and all of its cyclic permutations.
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4693. Proposed by Michel Bataille.

Prove that
n∑
k=1

sec4 kπ

2n+ 1
=

8n(n+ 1)(n2 + n+ 1)

3

for any positive integer n.

We received 20 submissions, of which 17 were correct and complete. We present
a solution submitted by Sean M. Stewart.

Define the polynomial

Pn(z) = (z − i)2n+1 + (z + i)2n+1,

where z ∈ C, n is a non-negative integer, and i is the imaginary unit. To find the
roots of this polynomial, one has

(z − i)2n+1 + (z + i)2n+1 = 0

⇒ (z − i)2n+1 = (−z − i)2n+1

⇒ z − i = e
2kπi
2n+1 (−z − i),

where k is an integer such that 0 6 k 6 2n. On solving for z we find

z =
i
Ä
1− e 2kπi

2n+1

ä
1 + e

2kπi
2n+1

=

Å
e
kπi

2n+1−e−
kπi

2n+1

2i

ãÅ
e
kπi

2n+1 +e
− kπi

2n+1

2

ã =
sin
Ä

kπ
2n+1

ä
cos
Ä

kπ
2n+1

ä = tan

Å
kπ

2n+ 1

ã
.

So zk = tan

Å
kπ

2n+ 1

ã
, 0 6 k 6 2n are the roots of Pn(z).

From the binomial theorem Pn(z) can be written as

Pn(z) = (z − i)2n+1 + (z + i)2n+1

=
2n+1∑
k=0

Ç
2n+ 1

k

å
z2n−k+1(−i)k +

2n+1∑
k=0

Ç
2n+ 1

k

å
z2n−k+1ik

=
2n+1∑
k=0

Ç
2n+ 1

k

å
z2n−k+1

(
ik + (−i)k

)
= 2z

n∑
k=0

(−1)k
Ç

2n+ 1

2k

å
(z2)n−k = 2zQn(z2),

where

Qn(x) =
n∑
k=0

(−1)k
Ç

2n+ 1

2k

å
xn−k.

So,

z2
k = tan2

Å
kπ

2n+ 1

ã
, 1 6 k 6 2n,
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are roots of the polynomial Qn(z2). Since Qn(x) can be expressed

Qn(x) =

Ç
2n+ 1

0

å
xn −

Ç
2n+ 1

2

å
xn−1 +

Ç
2n+ 1

4

å
xn−2 −

Ç
2n+ 1

6

å
xn−3 + · · · ,

by Vièta’s formula for the sum of the roots of the polynomial Qn(x), we have

∑
cyc

α = −−
(

2n+1
2

)(
2n+1

0

) =

Ç
2n+ 1

2

å
= n(2n+ 1).

Likewise, the sum of the products of pairs of roots, denoted by
∑

cyc αβ, is

∑
cyc

αβ =

(
2n+1

4

)(
2n+1

0

) =

Ç
2n+ 1

4

å
=
n(n− 1)(4n2 − 1)

6
.

Thus,
n∑
k=1

tan2

Å
kπ

2n+ 1

ã
=
∑
cyc

α = n(2n+ 1),

while

n∑
k=1

tan4

Å
kπ

2n+ 1

ã
=
∑
cyc

α2 =

(∑
cyc

α

)2

− 2
∑
cyc

αβ

= [n(2n+ 1)]
2 − n(n− 1)(4n2 − 1)

3

=
n(2n+ 1)(4n2 + 6n− 1)

3
.

Since

sec4 θ = (1 + tan2 θ)2 = 1 + 2 tan2 θ + tan4 θ,

we have

n∑
k=1

sec4

Å
kπ

2n+ 1

ã
=

n∑
k=1

ß
1 + 2 tan2

Å
kπ

2n+ 1

ã
+ tan4

Å
kπ

2n+ 1

ã™
=

n∑
k=1

1 + 2
n∑
k=1

tan2

Å
kπ

2n+ 1

ã
+

n∑
k=1

tan4

Å
kπ

2n+ 1

ã
= n+ 2n(2n+ 1) +

1

3
n(2n+ 1)(4n2 + 6n− 1)

=
8n(n+ 1)(n2 + n+ 1)

3
.
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4694. Proposed by Chen Jiahao.

In triangle ABC, the inscribed circle touches side BC, CA and AB at D,E and
F , respectively. Let A′, B′ and C ′ be the reflection of A,B and C in line EF ,
DF and DE, respectively. Show that the area of triangle DEF equals the area of
triangle A′B′C ′.

Solution 1, by Chris Fisher.

Because the lines AE and AF are tangents to the incircle, the line segments AE
and AF are congruent. Since A′ is the reflection of A in the line EF , AFA′E is
a rhombus with AE‖FA′. This suggests the following generalization:

Given triangle ABC, let D, E, F be arbitrary points on the sides BC,
CA, AB respectively. Define

A′ to be the point where the line parallel to AB through E intersects
the line parallel to AC through F ,
B′ to be the point where the line parallel to BC through F intersects
the line parallel to BA through D,
C ′ to be the point where the line parallel to CA through D intersects
the line parallel to CB through E.

Then the triangles DEF and A′B′C ′ have equal areas.

A : (0, 1)

B : (0, 0) C : (1, 0)D : (d, 0)

E : (e, 1− e)

F : (0, f)

A′ : (e, f − e)

B′ : (d, f)

C ′ : (d+ e− 1, 1− e)

Because the ratio of areas is invariant under an affine transformation, we may
wolog take the origin at B, and let C = (1, 0) and A = (0, 1). We let D = (d, 0),
E = (e, 1 − e) and F = (0, f), whereupon A′ = (e, f − e), B′ = (d, f) and
C ′ = (d+ e− 1, 1− e).
The respective areas of triangle DEF and A′B′C ′ are∣∣∣∣∣∣

d 0 1
e 1− e 1
0 f 1

∣∣∣∣∣∣ and

∣∣∣∣∣∣
e f − e 1
d f 1

d+ e− 1 1− e 1

∣∣∣∣∣∣
which both equal d− de− df + ef .
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Solution 2, by Oliver Geupel, Mehra Vivek and Somasundaram Muralidharan (done
independently).

Let each point X in the problem be represented in the complex plane by its
corresponding lower case letter x. Wolog, we assume that d, e, f lie on the unit
circle. Thus d̄ = 1/d, ē = 1/e and f̄ = 1/f .

Recall that the area of a triangle (up to sign) with vertices z1, z2, z3 in the complex
plane is given by

i

4

∣∣∣∣∣∣
1 z1 z̄1

1 z2 z̄2

1 z3 z̄3

∣∣∣∣∣∣ .
Therefore

[DEF ] =
i

4def
(d− e)(e− f)(f − d).

Since AE = AF , IE ⊥ EA, IF ⊥ FA (I the centre of the incircle), a − e = λie
and a− f = −λif for some nonzero real λ. Hence f(a− e) = −e(a− f), so that
a = 2ef/(e+ f). Similarly, b = 2fd/(f + d) and c = 2de/(d+ e). Since AA′ and
DE bisect each other, we have a+ a′ = d+ e, so that

a′ = e+ f − a =
e2 + f2

e+ f

and ā′ = a′/ef . Similarly

b′ =
f2 + d2

f + d
, b̄′ =

b′

fd
, c′ =

d2 + e2

d+ e
, c̄′ =

c′

de
.

[A′B′C ′] =
i

4

∣∣∣∣∣∣
1 a′ a′/ef
1 b′ b′/fd
1 c′ c′/de

∣∣∣∣∣∣
=
i

4

ï
b′c′

Å
1

de
− 1

fd

ã
+ c′a′

Å
1

ef
− 1

de

ã
+ a′b′

Å
1

fd
− 1

ef

ãò
=

i

4def
[b′c′(f − e) + c′a′(d− f) + a′b′(e− d)]

=
i[(f2 + d2)(d2 + e2)(f2 − e2) + (d2 + e2)(e2 + f2)(d2 − f2) + (e2 + f2)(f2 + d2)(e2 − d2)]

4def(d+ e)(e+ f)(f + d)

=
i(d2 − e2)(e2 − f2)(f2 − d2)

4def(d+ e)(e+ f)(f + d)
= [DEF ].

Solution 3, by Michel Bataille.

Consider the points as vectors in the plane. Let a = BC, b = CA, c = AB,

2s = a+b+c, u = s−a = AF = AE, v = s−b = BF = BD, w = s−c = CD = CF.
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We have

aD = (v+w)D = wB+vC, bE = (w+u)E = uC+wA, cF = (u+v)F = vA+uB.

Multiplying these equations by −u, v, w respectively and adding yields

2vwA = −u(v + w)D + v(w + u)E + w(u+ v)F.

Since AA′ and EF right bisect each other, we have A′ +A = E + F , whence

2vwA′ = 2vw[−A+ E + F ] = −2vwA+ 2vwE + 2vwF

= u(v + w)D + v(w − u)E + w(v − u)F.

Similarly,
2wuB′ = u(w − v)D + v(w + u)E + w(u− v)F

and
2uvC ′ = u(v − w)D + v(u− w)E + w(u+ v)F.

[A′B′C ′]

[DEF ]
=

1

8u2v2w2

∣∣∣∣∣∣
u(v + w) v(w − u) w(v − u)
u(w − v) v(w + u) w(u− v)
u(v − w) v(u− w) w(u+ v)

∣∣∣∣∣∣
=

1

8uvw

∣∣∣∣∣∣
v + w w − u v − u

2w 2w 0
2v 0 2v

∣∣∣∣∣∣ =
1

2u

∣∣∣∣∣∣
v + w w − u v − u

1 1 0
1 0 1

∣∣∣∣∣∣ = 1.

Solution 4, by Prithwijit De.

Let r, R, a, b, c, I, α, β, γ be the inradius, circumradius, sides, incentre and angles
of triangle ABC. Observe that AA′, BB′ and CC ′ intersect at I, and that AA′

and EF right bisect each other. We have

AI = r cscα/2, AF = r cot(α/2)

AA′ = 2AF cos(α/2) = 2r cot(α/2) cos(α/2) = 2r csc(α/2) cos2(α/2)

A′I = AA′ −AI = r csc(α/2) cosα.

We note that, if A is obtuse, then cosα < 0, cos2(α/2) < 1/2 and AA′ < AI, I
lies outside triangle A′B′C ′ and angles A′IB′ and AIB are supplementary. If one
angle of ABC is obtuse, we can regard expressions for length and area as signed.

Since

r = 4R sin(α/2) sin(β/2) sin(γ/2), B′I = r csc(β/2) cosβ, ∠AIB = 90◦ + (γ/2),

we get

[A′IB′] = 1
2 (A′I)(B′I) sin(∠A′IB′) = 1

2 (A′I)(B′I) sin(∠AIB)

= 1
2r

2 cosα cosβ csc(α/2) csc(β/2) cos(γ/2)

= 2rR cosα cosβ sin(γ/2) cos(γ/2) = rR cosα cosβ sin γ.
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Using analogous expressions for [B′IC ′] and [C ′IA′] and additionally the fact that
tan(α+ β + γ) = 0. we find that

[A′B′C ′] = [A′IB′] + [B′IC ′] + [C ′IA′]

= rR(cotα cotβ + cotβ cot γ + cot γ cotα) sinα sinβ sin γ

= rR sinα sinβ sin γ.

On the other hand,

[DEF ] = 1
2 (DE)(DF ) sin(∠FDE)

= 1
2 (2r cos γ/2)(2r cosβ/2) sin(90◦ − α/2)

= 2r2 cos(α/2) cos(β/2) cos(γ/2)

= 2r(4R sin(α/2) cos(α/2) sin(β/2) cos(β/2) sin(γ/2) cos(γ/2)

= rR sinα sinβ sin γ

= [A′B′C ′].

Solution 5, by the proposer.

This solution is based on the diagram supplied with the problem, but can be
adapted for different positioning of the points. Let α, β, γ be the angles at the
respective vertices A, B, C of the triangle. Then the angles of the triangle DEF
are 90◦ − (α/2), 90◦ − (β/2), 90◦ − (γ/2) at the respective vertices D, E, F , and
the angle at BFB′ and CEC ′ are respectively 180◦ − β and 180◦ − γ. Therefore

∠B′FE = ∠BFD + ∠DFE − ∠BFB′

= (90◦ − β
2 ) + (90◦ − γ

2 )− (180◦ − β) = 1
2 (β − γ),

and

∠C ′EF = ∠C ′EC − ∠FED − ∠CED

= (180◦ − γ)− (90◦ − β
2 )− (90◦ − γ

2 ) = 1
2 (β − γ).

It follows that B′F‖C ′E. Similarly A′F‖C ′D and A′E‖B′D.

Since triangles on the same base between the same parallels have equal area,
[B′C ′F ] = [B′EF ], [A′C ′F ] = [A′DF ], [B′DE] = [A′DB′]. Therefore

[A′B′C ′] = [B′C ′F ] + [A′C ′F ] + [FB′D]− [A′DB′]− [A′DF ]

= [B′EF ] + [A′DF ] + [F ′BD]− [B′DE]− [A′DF ]

= [B′EF ] + [FB′D]− [B′DE] = [DEF ].

Comments from the editor. J.-C. Andrieux used barycentric coordinates with
A ∼ (1, 0, 0), B ∼ (0, 1, 0), C ∼ (0, 0, 1), D ∼ (0, w/a, v/a), E ∼ (w/b, 0, u/b),
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F ∼ (v/c, u/c, 0). Using a determination for the ratio of areas related to those in
Solutions 2 and 3, he found that

[DEF ]

[ABC]
=

1

abc

∣∣∣∣∣∣
0 w v
w 0 u
v u 0

∣∣∣∣∣∣ =
2uvw

abc
.

The barycentric coordinates for the vertices of triangle A′B′C ′ are(w
b

+
v

c
− 1,

u

c
,
u

b

)
; B′ ∼

(v
c
,
u

c
+
w

a
− 1,

v

a

)
; C ′ ∼ (

w

b
,
w

a
,
v

a
+
u

b
− 1).

The determinant that represents [A′B′C ′]/[ABC] is pretty indigestible and seems
to require the muscle of a computer to sort out. When the dust settles, this ratio
equals that of [DEF ]/[ABC]. There were two other solvers who had to resort to
a computer programme to simplify a determinant.

The solver who submitted an incorrect solution used the barycentric coordinates
for the situation that D, E and F were the intersection points of the angle bisectors
with the respective sides BC, CA and AB. It turns out that, if A′ is the result
of reflecting A through the midpoint of EF (and similarly for B′ and C ′), then
the conditions of the result in Solution 1 are satisfied. The determinants in this
situation turn out to be easy to determine. In the ratio [A′B′C ′]/[ABC], the
determinant f(a, b, c) to be evaluated is a polynomial of degree 6 that is easily
seen to vanish when any of a, b, c, a + b, b + c, c + a vanish, so has the form
kabc(a+ b)(b+ c)(c+ a), where k = f(1, 1, 1)/8.

4695. Proposed by George Apostolopoulos.

Let triangle ABC have sides BC = a,CA = b and AB = c and circumradius R.
Equilateral triangles A1BC, B1CA and C1AB are drawn externally to triangle
ABC. Let K, L and M be the centroids of the equilateral triangles, respectively.
Prove that

[ALM ] + [BMK] + [CKL] ≤ 3
√

3

4
R2,

where [·] denotes the area of the corresponding triangle.

We received 14 submissions, all but one of which were correct. We feature a
composite of the similar solutions by Subhankar Gayen and by Marie-Nicole Gras.

Let r be the inradius and s the semi-perimeter of 4ABC; we denote by A, B and
C the angles ∠BAC, ∠CBA and ∠ACB, respectively.

Since L is the centroid of equilateral 4B1AC, and M is the centroid of equilateral
4C1AB, we deduce the relations

AL =
b
√

3

3
, AM =

c
√

3

3
and ∠LAC = ∠MAB = 30o.
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It follows ∠LAM = A+ 60o, and

[ALM ] =
1

2
AL·AM sin(∠LAM)

=
1

2

b
√

3

3

c
√

3

3
sin(A+ 60o) =

bc

6
sin(A+ 60o)

=
bc

6

[1

2
sinA+

√
3

2
cosA

]
=
bc

12
sinA+

√
3

24

(
2bc cosA

)
=

bc

12
· a

2R
+

√
3

24

(
b2 + c2 − a2

) [
Sine Law and Cosine Law].

By permuting a, b, c, we deduce [BMK] and [CKL], and obtain

F := [ALM ] + [BMK] + [CKL] =
abc

8R
+

√
3

24

(
a2 + b2 + c2

)
. (1)

Since abc = 4srR, we obtain

F =
sr

2
+

√
3

24

(
a2 + b2 + c2

)
.

Now, we use the following relations (see, for example, O. Bottema et al, Geometric

Inequalities (1968)),

r ≤ R
2 (5.1)

s ≤ 3
√

3R
2 (5.3)

a2 + b2 + c2 ≤ 9R2 (5.13)
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with equality in all when ∆ABC is equilateral. We deduce

F ≤ 1

2
· 3R
√

3

2
·R

2
+

√
3

24
(9R2) =

3
√

3

4
R2,

with equality if and only if the given triangle is equilateral. Alternatively, we can
combine the Weitzenböck inequality, namely

sr ≤ a2 + b2 + c2

4
√

3
,

with Bottema’s equation (5.13) to get the same result.

Editor’s comments. Readers will certainly recognize ∆KLM as the outer Napoleon
triangle of the given triangle ABC. (See, for example, Geometry Revisited by
H.S.M. Coxeter and S.L. Greitzer (1967), Section 3.3, pages 60-65.) Among other
properties of the configuration, the circumcircles of the triangles such as A1BC
(erected outwardly on the sides of ∆ABC) meet in the Fermat point F of ∆ABC.
The three triangles with common vertex F and opposite sides LM,MK,KL are
congruent, respectively, to the three triangles ALM,BMK,CKL of problem 4695.
Consequently the sum of interest, namely equation (1), equals the area of the
outer Napoleon triangle. In other words, we have shown that the area of the outer

Napoleon triangle is bounded above by 3
√

3
4 R2. By anaolgy, if equilateral triangles

are erected internally on the sides of ∆ABC, their centers are the vertices of the
inner Napoleon triangle, whose area is

√
3

24

(
a2 + b2 + c2

)
− sr

2
.

Note that the outer and inner Napoleon triangles of any triangle ABC differ in
area by [ABC].

4696. Proposed by Elena Corobea.

Find the following limit:

lim
n→∞

∫ 1

0

Ä
1 + x+ x2

2 + · · ·+ xn−1

n−1

än+1Ä
1 + x+ x2

2 + · · ·+ xn

n

än dx.

There were 16 solutions submitted, of which 14 were correct. We present a solution
followed by many solvers.

For n ≥ 1, let

fn(x) = 1 + x+
x2

2
+ · · ·+ xn

n
.

For n ≥ 2 and x > 0, fn−1(x) < fn(x). Denote the integral in the problem by In.

In =

∫ 1

0

ï
fn−1(x)

fn(x)

òn
fn−1(x) dx <

∫ 1

0

fn−1(x) dx

= 1 +
1

1 · 2 +
1

2 · 3 + · · ·+ 1

(n− 1)n
= 2− 1

n
.
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For the lower bound of In, we first note that, when b > a ≥ 0,

an+1

bn
= b− bn+1 − an+1

bn

= b− (b− a)

Å
1 +

a

b
+
a2

b2
+ · · ·+ an

bn

ã
≥ b− (b− a)(n+ 1).

Hence
fn−1(x)n+1

fn(x)n
≥ fn(x)− (n+ 1)xn

n
,

from which

In ≥
∫ 1

0

fn(x) dx−
∫ 1

0

(n+ 1)xn

n
dx

= 1 +
1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n+ 1)
− 1

n

= 2− 1

n+ 1
− 1

n
.

Therefore

2− 1

n
− 1

n+ 1
< In < 2− 1

n
.

from which limn→∞ In = 2.

Comments from the editor. About half the solvers essentially used the foregoing
argument. Another approach followed by others relied on the fact that the limit
of the integrand was 1 − ln(1 − x) and used either the Dominated or Monotone
Convergence Theorem to show that the limit is∫ 1

0

(1− ln(1− x)) dx = [2x− (x− 1) ln(1− x)]10 = 2.

Showing that the integrand increases with respect to n involves showing that
fn−1(x)fn+1(x) ≤ fn(x)2.

It was pointed out to us by a reader that a similar problem by the same proposer
appeared in American Mathematical Monthly 128:3 (March, 2021), 276-277, to wit

12242. For n ≥ 1, let

In =

∫ 1

0

(
∑n
k=0 xk/(2k + 1))2022∑n+1
k=0(xk/(2k + 1))2021

dx

and L = limn→∞ In. Compute L and limN→∞ n(In − L).

We will take this opportunity to point out that proposers should not submit iden-
tical or equivalent problems to multiple sources at the same time. This is an
unethical and disrespectful practice.
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4697. Proposed by Amit Kumar Basistha.

Let f : N → N with f(1) = 1, f(2) = a for some a ∈ N and, for each positive
integer n ≥ 3, f(n) is the smallest value not assumed at lower integers that is
coprime with f(n− 1). Prove that f is onto.

We received 7 submissions and they were all correct. We present the solution by
the majority of solvers, slightly modified by the editor.

We first show that the image of the function f contains the set of primes. Assume
for contradiction that there is a prime p which is not in the image of f . Since f
is one-to-one, there is an N ∈ N such that f(m) > p for each m > N . Given any
m > N , since f(m) > p, it follows that f(m − 1) has a common factor with p,
that is, p | f(m − 1). In particular, p | f(N) and p | f(N + 1), contradicting the
assumption that f(N) and f(N + 1) are coprime.

Next we show that f is onto. Assume for contradiction that there is a natural
number k which is not in the image of f . From the definition of the function f , it
is clear that f is one-to-one. Thus, there is an N ∈ N such that f(m) > k for each
m > N . Given any m > N , since f(m) > k, it follows that f(m−1) has a common
factor with k. In particular, for every prime p with p - k, we have that f(m−1) 6= p.
Therefore, if p is a prime with p - k, then p ∈ {f(1), f(2), . . . , f(N − 1)}. This is
impossible as the set of primes not dividing k is infinite.

Editor’s Comment. Barbara Roy pointed out that the above proof in fact shows
the following more general statement:

Let f : N→ N be so that for all sufficiently large n, f(n) is the smallest
value not assumed at lower integers that is coprime with f(n−1). Then
f is onto.

4698. Proposed by Goran Conar.

Let x1, . . . , xn > 0 be real numbers such that x1 + x2 + · · ·+ xn = 1. Prove that

n∑
i=1

xi ln(1 + xi) < ln 2 .

We received 30 solutions, of which two were incorrect. We present the solution by
Amit Kumar Basistha, modified slightly by the editor.

First (as several solvers pointed out), equality holds when n = 1. We thus assume
n ≥ 2. We then have, since xi < 1 for all i,

n∑
i=1

xi ln (1 + xi) =
n∑
i=1

ln [(1 + xi)
xi ] = ln

n∏
i=1

[(1 + xi)
xi ]

< ln
n∏
i=1

2xi = ln
Ä
2
∑n

i=1
xi
ä

= ln 2.
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4699. Proposed by Mihaela Berindeanu.

Let ABC be a non-isosceles triangle with acute angles B and C. Let D and E be
two points outside the triangle and F be the foot of the altitude from A. Show
that if

∠EAC = ∠ECA = ∠ABC, ∠DAB = ∠ABD = ∠BCA

and BE ∩ CD ∩AF = {X}, then AX = XF .

All 11 submissions that we received were correct; we shall feature two of them.

Solution 1 by the UCLan Cyprus Problem Solving Group.

Let ω be the circumcircle of triangle ABC. Since ∠DAB = ∠BCA, then DA is
tangent to ω at A. Similarly, DB,EA,EC are also tangent to ω. In particular
D,A,E are collinear.

We claim that BD and CE are parallel. If this is not the case, then let G be their
point of intersection. Since

DA

AE
· EC
CG
· GB
BD

=
DA

DB
· EC
EA
· GB
GC

= 1 ,

while BE and CD are assumed to intersect at X, Ceva’s theorem implies that AG
must also pass through X. It follows that GF is perpendicular to BC and, since
GB = GC, then BF = CF . It now follows that AB = AC, a contradiction as the
triangle ABC is nonisosceles.

Since the parallel lines BD and CE are tangent to ω, BC must be a diameter.
Thus, ∠DBC = ∠ECB = 90◦. In particular, AF is also parallel to BD and
CE. So we have the similarities of triangles EAX ∼ EDB,CXF ∼ CDB and
XBD ∼ XEC from which we get

AX

BD
=
EX

EB
=
CX

CD
=
FX

BD
.

Therefore AX = FX as required.
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Solution 2 by Titu Zvonaru.

Since ∠EAC = ∠ECA = ∠ABC, the lines EA and EC are tangent to the circum-
circle of ∆ABC; analogously, DA and DB are also tangents to the circumcircle.
It follows that BE and CD are symmedians in ∆ABC and, consequently, so is
AF . It is known that the altitude AF is a symmedian if and only if AB = AC or
∠BAC = 90◦; here is an easy proof:

AF is a symmedian if and only if FB
FC = c2

b2 ; AF is an altitude if and only if
FB
FC = c cosB

b cosC ; consequently,

c cosB

b cosC
=
c2

b2

⇔ b cosB = c cosC

⇔ sin 2B = sin 2C

⇔ ∠B = ∠C or 2∠B + 2∠C = 180◦.

Because the triangle is assumed to be nonisosceles, we conclude that ∠A = 90◦.
We denote {M} = BE ∩AC and {N} = CD ∩AB. Van Aubel’s theorem implies
that

AX

XF
=
AM

MC
+
AN

NB
=
AB2

BC2
+
AC2

BC2
= 1;

hence AX = XF , as claimed.

4700. Proposed by Hung Nguyen Viet.

Let ABCD be a unit square. The points M and N lie on the sides BC and CD
respectively such that ∠MAN = 45◦. Prove that

MN +BM ·DN = 1.

We received more than 44 solutions. We selected the following 11 solutions to show
the variety of methods that the solvers used.
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Solution 1, by the proposer.

We take point P on the ray CB such that BP = DN. This leads us to AN = AP
and consequently ∆AMN = ∆AMP. Hence MN = MP = MB + ND. Now we
have

∠BAM + ∠DAN = 45◦.

Therefore

1 = tan(∠BAM + ∠DAN) =
tan∠BAM + tan∠DAN

1− tan∠BAM tan∠DAN
or

1− tan∠BAM tan∠DAN = tan∠BAM + tan∠DAN

or

1− BM

AB
· DN
AD

=
BM

AB
+
DN

AD
.

From here and noting that AB = AD = 1, we get

1−BM ·DN = BM +DN = MN.

The conclusion follows.

Solution 2, by Brian D. Beasley.

Let α = ∠DAN (with 0◦ ≤ α ≤ 45◦) and β = ∠BAM , so that α+β = 45◦. Then
DN = tanα, BM = tanβ, and

MN =
√

(1− tanα)2 + (1− tanβ)2.

Applying the tangent subtraction formula yields tanβ = (1 − tanα)/(1 + tanα)
and hence

MN +BM ·DN =

 
(1− tanα)2 +

Å
2 tanα

1 + tanα

ã2

+
tanα(1− tanα)

1 + tanα

=
1 + tan2 α

1 + tanα
+

tanα− tan2 α

1 + tanα

= 1.

Solution 3, by Brian Bradie.

Let θ = ∠BAM . Then ∠DAN = 45◦ − θ, BM = tan θ, and

DN = tan(45◦ − θ) =
1− tan θ

1 + tan θ
.

Next, CM = 1− tan θ,

CN = 1− 1− tan θ

1 + tan θ
=

2 tan θ

1 + tan θ
,
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and

MN2 = (1− tan θ)2 +
4 tan2 θ

(1 + tan θ)2
=

(1 + tan2 θ)2

(1 + tan θ)2
,

so

MN =
1 + tan2 θ

1 + tan θ
.

Finally,

MN +BM ·DN =
1 + tan2 θ

1 + tan θ
+

tan θ − tan2 θ

1 + tan θ
=

1 + tan θ

1 + tan θ
= 1.

Solution 4, by the Eagle Problem Solvers.

Let b = BM and d = DN . Then AM =
√
b2 + 1, AN =

√
d2 + 1, tan∠BAM = b,

and tan∠NAD = d. Since

∠BAM + ∠NAD =
π

2
− ∠MAN =

π

4
,

then

d = tan∠NAD = tan
(π

4
− ∠BAM

)
=

1− b
1 + b

.

Notice that

d2 + 1 =

Å
1− b
1 + b

ã2

+ 1 =
2(b2 + 1)

(b+ 1)2

and

(b2 + 1)(d2 + 1) = 2

Å
b2 + 1

b+ 1

ã2

.

From the Law of Cosines,

MN2 = AM2 +AN2 − 2(AM)(AN) cos
π

4

= (b2 + 1) + (d2 + 1)−
»

2(b2 + 1)(d2 + 1)

= (b2 + 1) +
2(b2 + 1)

(b+ 1)2
− 2

Å
b2 + 1

b+ 1

ã
=

b2 + 1

(b+ 1)2

[
b2 + 2b+ 1 + 2− 2(b+ 1)

]
=

Å
b2 + 1

b+ 1

ã2

.

Thus, MN = b2+1
b+1 and

MN +BM ·DN =
b2 + 1

b+ 1
+ b

Å
1− b
1 + b

ã
=
b2 + 1 + b− b2

1 + b
= 1.

Crux Mathematicorum, Vol. 48(5), May 2022



Solutions /303

Solution 5, by Prithwijit De.

Let BM = x, DN = y and ∠BAM = α. Then x = tanα and y = tan(45◦ − α),

whence y =
1− x
1 + x

. Now,

MN2 = (1− x)2 + (1− y)2 = (y + xy)2 + (1− y)2 = 1 + (xy)2 + 2y(y + xy − 1)

= (1− 2xy + x2y2) = (1− xy)2.

Therefore

MN +BM.DN = (1− xy) + xy = 1.

Solution 6, by Noah Garson.

Note that in the above diagram we have defined the variables we will be using in
the proof; y is the distance from C to M , thus 1− y is the distance from B to M .
Similarily, we define x as the distance between C and N and 1−x as the distance
between N and D.

If we refer to the above diagram, it is clear that arctan(1−y)+arctan(1−x) = π/4.
By the formula for addition in arctangent, it follows that

arctan

Å
1− x+ 1− y

1− (1− x)(1− y)

ã
= π/4, and so

2− x− y
1− 1 + x+ y − xy = tan(π/4) = 1.

Thus we have:

2− x− y = x+ y − xy,
2− 2x− 2y + xy = 0.
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Now we just have to prove that MN +BM ·DN =
√
x2 + y2 + (1−y)(1−x) = 1:

(2− 2x− 2y + xy)(xy) = 0,

2xy − 2x2y − 2xy2 + x2y2 + x2 + y2 = x2 + y2,

(y + x− xy)2 = x2 + y2,

y + x− xy =
√
x2 + y2,

1− (1− y − x+ xy) =
√
x2 + y2,

1− (1− x)(1− y) =
√
x2 + y2,

1 =
√
x2 + y2 + (1− x)(1− y).

As required, hence the claim that MN +BM ·DN = 1 has been shown.

Solution 7, by David A. Huckaby.

Let BM = x and CN = y so that AM =
√

1 + x2, AN =
√

1 + (1− y)2, and

MN =
√
y2 + (1− x)2. See the figure below.

The Law of Cosines applied to triangle AMN gives

MN2 = AM2 +AN2 − 2 ·AM ·AN · cos 45◦

y2 + (1− x)2 = 1 + x2 + 1 + (1− y)2 − 2
√

1 + x2
»

1 + (1− y)2 ·
√

2

2

y2 + 1− 2x+ x2 = 3 + x2 − 2y + y2 −
√

2
√

1 + x2
»

1 + (1− y)2

2 + 2x− 2y =
√

2
√

1 + x2
»

1 + (1− y)2

√
2(1 + x− y) =

√
1 + x2

»
1 + (1− y)2 (1)

The area ∆ of triangle AMN is the area of square ABCD minus the sum of the
areas of triangles ABM , CMN and ADN , so that

∆ = 1− 1

2
(1)(x)− 1

2
(y)(1− x)− 1

2
(1)(1− y) =

1

2
(1− x+ xy).
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Now from the Law of Sines, MN
sin∠MAN = 2R, where R is the circumradius of

triangle AMN . Combining this with the well-known formula R = abc
4∆ , where a, b,

and c are the sides of the triangle, gives

MN

sin∠MAN
= 2R = 2 · AM ·AN ·MN

4∆
,

that is, √
y2 + (1− x)2

√
2

2

= 2 ·
√

1 + x2
√

1 + (1− y)2
√
y2 + (1− x)2

4 · 1
2 (1− x+ xy)

1
√

2
2

=

√
1 + x2

√
1 + (1− y)2

1− x+ xy

√
2(1− x+ xy) =

√
1 + x2

»
1 + (1− y)2 (2)

Equations (1) and (2) give 1 + x− y = 1− x+ xy, whence y = 2x
x+1 .

So,

MN +BM ·DN =
»
y2 + (1− x)2 + x(1− y)

=

 Å
2x

x+ 1

ã2

+ (1− x)2 + x

Å
1− 2x

x+ 1

ã
=

 
(2x)2

(x+ 1)2
+

(x2 − 1)2

(x+ 1)2
+ x− 2x2

x+ 1

=

 
(x2 + 1)2

(x+ 1)2
+ x− 2x2

x+ 1

=
x2 + 1 + x(x+ 1)− 2x2

x+ 1

=
x+ 1

x+ 1

= 1.

Solution 8, by Parviz Khalili.

Let ∠AND = α and ∠AMB = β then α + β = 135◦. From triangles ABM
and ADN we have

DN = cotα, BM = cotβ, AN = cscα, AM = cscβ

Employ the Law of Cotangent

cot(α + β) = cot(135◦) = −1 =
cotα+ cotβ

cotα cotβ − 1
=

DN + BM

DN ·BM − 1
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Thus, we have
BM + DN + BM ·DN = 1

Therefore, we need to show

MN = BM + DN = cotα + cotβ.

Next, apply the Law of Cosine to triangle AMN . (It is useful to note that
cos(α + β) = cos(135◦) = − cos(45◦).)

MN2 = AM2 + AN2 − 2AM ·AN cos 45◦

= csc2 α+ csc2 β + 2 cscα cscβ cos(α + β)

= 1 + cot2 α+ 1 + cot2 β + 2 cscα cscβ cos(α + β)

= cot2 α+ cot2 β + 2
(

1 +
cos(α + β)

sinα sinβ

)
.

Simplifying we obtain

MN2 = cot2 α+ cot2 β + 2 cotα cotβ = (cotα+ cotβ)2

Thus the equality is verified and the proof is complete.

Solution 9, by Theo Koupelis.

Let ∠BAM = θ. Then ∠DAN = 45◦ − θ, and therefore

BM = tan θ, MC = 1− tan θ,

DN = tan(45◦ − θ) =
1− tan θ

1 + tan θ
, CN = 1−DN =

2 tan θ

1 + tan θ
.

From the right triangle MCN , we have

MN2 = (1− tan θ)2 +

Å
2 tan θ

1 + tan θ

ã2

=

Å
1 + tan2 θ

1 + tan θ

ã2

,

and therefore

MN =
1 + tan2 θ

1 + tan θ
= 1− tan θ · 1− tan θ

1 + tan θ
= 1−BM ·DN.

Solution 10, by Marie-Nicole Gras.

Put u = BM , v = DN , θ = ∠BAM and ω = ∠DAN . In the right angled
4NCM , we have

MN2 = (1− u)2 + (1− v)2,

and then, it is equivalent to prove that MN2 = (1−BM ·DN)2, whence

(1− u)2 + (1− v)2 = (1− uv)2.
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By assumption, θ + ω = 45o; it follows

tan(θ + ω) =
tan(θ) + tan(ω)

1− tan(θ) tan(ω)
= 1.

However, tan(θ) = u and tan(ω) = v; we deduce

u+ v = 1− uv.

It results

(1− u)2 + (1− v)2 − (1− uv)2 = (1− u)2 + (1− v)2 − (u+ v)2

= −2u− 2v + 2− 2uv

= −2(u+ v − 1 + uv)

= 0.

Then, we have shown the equality.

Solution 11, by Sorin Rubinescu.

We denote BM = x,DN = y, x, y < 1. In 4MAN we have

MN2 = AN2 +AM2−2 ·AM ·AN ·cos 45◦ = 1+y2 +1+x2−
»

2 (1 + x2) (1 + y2).

In 4NCM , we have

MN2 = (1− x)
2

+ (1− y)
2

= x2 + y2 − 2x− 2y + 2. (i)

Equating the two relations from above, we get that

x2 + y2 − x2y2 + 4xy − 1 = 0

⇔
(
x2 + y2 + 2xy

)
−
(
x2y2 − 2xy + 1

)
= 0

⇔ (x+ y)
2

= (1− xy)
2
.
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Thus,

x+ y =| 1− xy |
⇒ x+ y = 1− xy, x · y < 1 (x < 1, y < 1)

⇔ x+ y + xy = 1

⇔ y =
1− x
1 + x

.

Substituting this into (i), we get that

MN2 =
x4 + 2x2 + 1

(1 + x)
2 ⇔MN =

x2 + 1

x+ 1
. (ii)

Then BM ·DN = xy =
x− x2

1 + x
, so by (ii) the conclusion now follows.
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