1. (a) Find all positive integers n such that $11 \mid\left(3^{n}+4^{n}\right)$.

Solution: We want to find all n such that $3^{n} \equiv-4^{n}(\bmod 11)$. Multiplying both sides of this equation by 3^{n} we get $9^{n} \equiv-1(\bmod 11)$. However $9^{5} \equiv 1(\bmod 11)$, and there is no smaller n such that $9^{n} \equiv-1(\bmod 11)$. Thus, there are no such positive integers n.
(b) Find all positive integers n such that $31 \mid\left(4^{n}+7^{n}+20^{n}\right)$.

Solution: Since 7,31 are coprime, $0 \equiv 4^{n}+7^{n}+20^{n}(\bmod 31)$ is equivalent to

$$
\begin{align*}
0 & \equiv \frac{4^{n}+7^{n}+20^{n}}{7^{n}} \\
& \equiv\left(\frac{20}{35}\right)^{n}+1+\left(\frac{100}{35}\right)^{n} \\
& \equiv 1+\left(\frac{20}{4}\right)^{n}+\left(\frac{100}{4}\right)^{n} \\
& \equiv 1+5^{n}+25^{n} \\
& \equiv 1+5^{n}+5^{2 n}
\end{align*}
$$

Since $5^{3} \equiv 1(\bmod 31)$, this sum only depends on $n(\bmod 3)$. We calculate:

$$
\begin{align*}
& 1+5^{0}+5^{2 * 0} \equiv 3 \\
& 1+5^{1}+5^{2 * 1} \equiv 0 \\
& 1+5^{2}+5^{2 * 2} \equiv 0
\end{align*}
$$

Hence the answer is all n such that n is not a multiple of 3 .
2. Let $P=(7,1)$ and let $O=(0,0)$.
(a) If S is a point on the line $y=x$ and T is a point on the horizontal x-axis so that P is on the line segment $S T$, determine the minimum possible area of triangle $O S T$.
Solution: Let (a, a) be the coordinates of S and $(b, 0)$ the coordinates of T. The line segments $S P, P T$, and $P T$ all have the same slope, so $\frac{a-1}{a-7}=\frac{1}{7-b}$. Solving for b we get $b=\frac{6 a}{a-1}$.
The triangle has a base of $O T=b$ and a height of a, so the area is $A=\frac{6 a^{2}}{2(a-1)}=\frac{3 a^{2}}{a-1}=$ $3 a+3+\frac{3}{a-1}=3(a-1)+6+\frac{3}{a-1}$. By the AM-GM inequality, $A \geq 2 \sqrt{3(a-1) \frac{3}{a-1}}+6=12$, with equality when $3(a-1)=\frac{3}{a-1}$. Equality holds when $a=2$, and we have $a=2, b=12$ and an area of 12 .
(b) If U is a point on the line $y=x$ and V is a point on the horizonal x -axis so that P is on the line segment $U V$, determine the minimum possible perimeter of triangle $O U V$.
Solution: Consider a circle that is tangent to the lines $O U, O V$, and $U V$ at the points A, B, and C respectively. We notice that $A U=C U$ and $B V=C V$, so the perimeter of $O U V$ equals $O A+O B=2 O A$.
In order to minimize this sum, we seek to minimize the size of the circle. Notice that if the circle is tangent to $U V$ at a point that is not P, then there exists a line through P that does not touch the circle. Taking this line as $U V$ would allow for the circle to be smaller. Thus, the perimeter will be minimized when the circle is tangent to the point P.
Let $U=(a, a), V=(b, 0)$, and $O A=x$. Then $V B=V C$, so $\sqrt{(b-7)^{2}+1}=x-b$. Solving for b yields $b=\frac{x^{2}-50}{2 x-14}$. Similarly $U P=U A$ and we find that $a=\frac{x^{2}-50}{2 \sqrt{2} x-16}$.
As in part (a), we have $b=\frac{6 a}{a-1}$. Substituting in a and b to this equation gives:

$$
\begin{aligned}
\frac{x^{2}-50}{2 x-14} & =\frac{6 \frac{x^{2}-50}{2 \sqrt{2} x-16}}{\frac{x^{2}-50}{2 \sqrt{2}-1}-16} \\
\frac{x^{2}-50}{2 x-14} & =\frac{6 \frac{x^{2}-50}{2 \sqrt{2}-5 x-16}}{\frac{x^{2}-2 \sqrt{2 x}-34}{2 \sqrt{2 x}-16}} \\
\frac{x^{2}-50}{2 x-14} & =\frac{6\left(x^{2}-50\right.}{x^{2}-2 \sqrt{2} x-34} \\
\left(x^{2}-50\right)\left(x^{2}-2 \sqrt{2} x-34\right) & =\left(x^{2}-50\right)(12 x-84) \\
\left(x^{2}-50\right)\left(x^{2}-(2 \sqrt{2}+12) x+50\right) & =0
\end{aligned}
$$

Solving this for x yields: $x= \pm \sqrt{50}, x=6+\sqrt{2} \pm 2 \sqrt{3(\sqrt{2}-1)}$
When $x= \pm \sqrt{50}, a$ and b are both 0 , which is not a solution. Of the two remaining solutions, we take the larger one, as the other occurs from the circle that is contained inside triangle $O U V$. thus the minimal perimeter is $2(6+\sqrt{2}+2 \sqrt{3(\sqrt{2}-1)})$.
3. Given an $n \times n \times n$ grid of unit cubes, a cube is good if it is a sub-cube of the grid and has side length at least two. If a good cube contains another good cube and their faces do not intersect, the first good cube is said to properly contain the second. What is the size of the largest possible set of good cubes such that no cube in the set properly contains another cube in the set?

Solution: Let S be the set of good cubes with side length 2 or 3. For any $s \in S$, we define C_{s} to be the set of good cubes that have s as their centre. Then we can see that for any s and any pair of distinct cubes in C_{s}, that one cube properly contains the other. Also, for any good cube c_{1} in the grid, there exists a cube $c_{2} \in S$ such that c_{2} is the centre of c_{1}. Thus, the size of largest possible set of good cubes with no cube properly containing each other is at most $|S|$. Finally, we observe that no cube in S can properly contain another cube in S. Thus $|S|=(n-1)^{3}+(n-2)^{3}$ is the size of the largest possible set.
4. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))+f(x-f(y))=x
$$

Solution: Let $a=f(0)$ and let $y=0, x=a$. The given equation becomes $f(2 a)+f(0)=a$ which is equivalent to $f(2 a)=0$. Now, let $y=2 a$ and we get $2 f(x)=x$ or $f(x)=x / 2$. If we substitute this into the given relation, we see that the equation holds with equality. Thus, $f(x)=x / 2$ is the only such function.
5. Consider a convex polygon P with n sides and perimeter P_{0}. Let the polygon Q, whose vertices are the midpoints of the sides of P, have perimeter P_{1}. Prove that $P_{1} \geq \frac{P_{0}}{2}$.
Solution: When P_{0} is a triangle, the sides of P_{1} are parallel to the sides of P_{0} and exactly half of the length of the side they are parallel to, so the result holds. When P_{0} has at least 4 sides, label the verties $v_{0}, v_{1}, \ldots v_{n-1}$ clockwise. Label the midpoints $m_{0}, m_{1}, \ldots, m_{n-1}$ clockwise, where m_{0} is the midpoint of $v_{0} v_{1}$. We observe that $2 m_{i} m_{i+1}=v_{i} v_{i+2}$, so it is equivalent to show that $v_{0} v_{2}+v_{1} v_{3}+\cdots+v_{n-1} v_{1} \geq v_{0} v_{1}+v_{1} v_{2}+\cdots v_{n-1} v_{0}$.
The segment $v_{i} v_{i+2}$ intersects $v_{i} v_{i+1}$ at a point w and intersects $v_{i+1} v_{i+2}$ at the point x. Observe that $v_{i} w+w v_{i+1} \geq v_{i} v_{i+1}$ by the triangle inequality. We can continue this all around the the polygon. We observe that over all segments $v_{i} v_{i+1}$, the segments $v_{i} w$ and $w v_{i+1}$ are disjoint subsegments of the set of segments $v_{i} v_{i+2}$. Thus, we have $v_{0} v_{2}+v_{1} v_{3}+\cdots+v_{n-1} v_{1} \geq v_{0} v_{1}+v_{1} v_{2}+\cdots v_{n-1} v_{0}$ and $P_{1} \geq \frac{P_{0}}{2}$.
6. Determine all ordered triples of positive integers (x, y, z) such that $\operatorname{gcd}(x+y, y+z, z+x)>$ $\operatorname{gcd}(x, y, z)$.
Solution: Let $g=\operatorname{gcd}(x+y, y+z, z+x)$. We observe that g must divide $(x+y)+(y+z)-(x+z)=2 y$. Similarly, g must also divide $2 x$ and $2 z$. Thus g divides $2 \operatorname{gcd}(x, y, z)$. In order to have $g>\operatorname{gcd}(x, y, z)$ we must have $g=2 \operatorname{gcd}(x, y, z)$.
Assume that $\operatorname{gcd}(x, y, z)=1$. Then 2 must divide $x+y, y+z$, and $z+x$. This can only happen when all of x, y, z have the same parity. Since their gcd is 1 , they must therefore all be odd. Thus, we have that x, y, z are odd numbers multiplied by a common factor. This is equivalent to having the largest power of 2 that divides each number being the same.
7. Starting at $(0,0)$, Richard takes $2 n+1$ steps, with each step being one unit either East, North, West, or South. For each step, the direction is chosen uniformly at random from the four possibilities. Determine the probability that Richard ends at $(1,0)$.
Solution: In order for Richard to end up at $(1,0)$ he must take the same number of steps north as he does south, and the number of steps he takes east must be one more than the number he takes west. Thus, we see that the number of steps taken north or west is n as is the number taken south or west. The number of ways to choose the n steps that are north or west is $\binom{2 n+1}{n}$, which is the

Life Financial
same as the number of ways to choose the steps that are south or west. A step is west if and only if it is chosen in both sets. Since there are a total of $2 n+1$ steps, the probability of ending at $(1,0)$ will be $\frac{\left(\begin{array}{c}\left(\begin{array}{c}n+1 \\ n\end{array}\right. \\ 4^{2 n+1}\end{array}\right.}{4^{2}}$.
8. Let $n \geq 3$ be a positive integer. A chipped n-board is a $2 \times n$ checkerboard with the bottom left square removed. Lino wants to tile a chipped n-board and is allowed to use the following types of tiles:

- Type 1: Any $1 \times k$ board where $1 \leq k \leq n$
- Type 2: Exactly one chipped k-board where $2 \leq k \leq n$, which covers the left-most tile.

Two tilings T_{1} and T_{2} are considered the same if there is a set of consecutive Type 1 tiles in both rows of T_{1} that can be vertically swapped to obtain the tiling T_{2}. For example, the following three tilings of a chipped 7 -board are the same:

For any positive integer n and any positive integer $1 \leq m \leq 2 n-1$, let $c_{m, n}$ be the number of distinct tilings of a chipped n-board using exactly m tiles (any combination of tile types may be used), and define the polynomial

$$
P_{n}(x)=\sum_{m=1}^{2 n-1} c_{m, n} x^{m}
$$

Find, with justification, polynomials $f(x)$ and $g(x)$ such that

$$
P_{n}(x)=f(x) P_{n-1}(x)+g(x) P_{n-2}(x)
$$

for all $n \geq 3$.
Solution: Given a chipped $(n-1)$-board, we can extend this to a chipped n-board in 4 different ways. For each of the two new spots in the last column, we can either have the tile be attached to the previous column, or we can have it be a new tile. This gives a recurrence of $P_{n}(x)=$

Life Financial

$\left(1+2 x+x^{2}\right) P_{n-1}(x)$. However, note that we have overcounted, as some of these tilings are equivalent to each other and some are not valid.

We get equivalent tilings when the k rightmost columns of the ($n-1$)-board contain two $1 \times k$ boards, in which case the tilings that consist of attaching one from the last column and not attaching the other are equivalent. Note that the number of such overcountings is given by the polynomial $x^{3} P_{n-1-k}$, as this tells us how mamy ways we can tile the left-most $n-k-1$ columns.
Also, note that if the $(n-1)$-board is a single piece, then neither of the two constructions which attach a single piece is valid. This mean that there are two invalid tilings of size 2 , which has polynomial $2 x^{2}$. Thus, our recurrence is actually

$$
P_{n}(x)=\left(1+2 x+x^{2}\right) P_{n-1}(x)-x^{3}\left(P_{n-2}(x)+P_{n-3}(x)+\cdots P_{1}(x)\right)-2 x^{2}
$$

We can write a similar recurrence for $P_{n-1}(x)$:

$$
P_{n-1}(x)=\left(1+2 x+x^{2}\right) P_{n-2}(x)-x^{3}\left(P_{n-3}(x)+P_{n-4}(x)+\cdots P_{1}(x)\right)-2 x^{2} .
$$

Subtracting these recurrences gives:

$$
P_{n}(x)-P_{n-1}(x)=\left(1+2 x+x^{2}\right)\left(P_{n-1}(x)-P_{n-2}(x)\right)-x^{3} P_{n-2}(x)
$$

We can simplify this to:

$$
P_{n}(x)=\left(2+2 x+x^{2}\right) P_{n-1}(x)-\left(1+2 x+x^{2}+x^{3}\right) P_{n-2}(x) .
$$

