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1. The front row of a movie theatre contains 45 seats.

(a) If 42 people are sitting in the front row, prove that there are 10 consecutive seats that
are all occupied.

(b) Show that this conclusion doesn’t necessarily hold if only 41 people are sitting in the
front row.

2. Given a positive integer m, let d(m) be the number of positive divisors of m. Determine all
positive integers n such that d(n) + d(n + 1) = 5.

3. We say that (a, b, c) form a fantastic triplet if a, b, c are positive integers, a, b, c form a geomet-
ric sequence, and a, b+1, c form an arithmetic sequence. For example, (2, 4, 8) and (8, 12, 18)
are fantastic triplets. Prove that there exist infinitely many fantastic triplets.

4. Let ABC be a triangle such that ∠BAC = 90◦ and AB < AC. We divide the interior of the
triangle into the following six regions:

S1 = set of all points P inside ΔABC such that PA < PB < PC
S2 = set of all points P inside ΔABC such that PA < PC < PB
S3 = set of all points P inside ΔABC such that PB < PA < PC
S4 = set of all points P inside ΔABC such that PB < PC < PA
S5 = set of all points P inside ΔABC such that PC < PA < PB
S6 = set of all points P inside ΔABC such that PC < PB < PA.

Suppose that the ratio of the area of the largest region to the area of the smallest non-empty
region is 49 : 1. Determine the ratio AC : AB.

5. Given a positive integer n, let d(n) be the largest positive divisor of n less than n. For
example, d(8) = 4 and d(13) = 1. A sequence of positive integers a1, a2, . . . satisfies

ai+1 = ai + d(ai),

for all positive integers i. Prove that regardless of the choice of a1, there are infinitely many
terms in the sequence divisible by 32011.

6. Determine whether there exist two real numbers a and b such that both (x−a)3 +(x−b)2 +x
and (x − b)3 + (x − a)2 + x contain only real roots.

7. Six tennis players gather to play in a tournament where each pair of persons play one game,
with one person declared the winner and the other person the loser. A triplet of three players
{A,B,C} is said to be cyclic if A wins against B, B wins against C and C wins against A.

(a) After the tournament, the six people are to be separated in two rooms such that none
of the two rooms contains a cyclic triplet. Prove that this is always possible.
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(b) Suppose there are instead seven people in the tournament. Is it always possible that the
seven people can be separated in two rooms such that none of the two rooms contains a
cyclic triplet?

8. Suppose circles W1 and W2, with centres O1 and O2 respectively, intersect at points M and
N . Let the tangent on W2 at point N intersect W1 for the second time at B1. Similarly, let
the tangent on W1 at point N intersect W2 for the second time at B2. Let A1 be a point on
W1 which is on arc B1N not containing M and suppose line A1N intersects W2 at point A2.
Denote the incentres of triangles B1A1N and B2A2N by I1 and I2, respectively.1

N

MB1

B2

A1 A2

O1 O2

Show that
∠I1MI2 = ∠O1MO2.

1Given a triangle ABC, the incentre of the triangle is defined to be the intersection of the angle bisectors of A, B
and C. To avoid cluttering, the incentre is omitted in the provided diagram. Note also that the diagram serves only
as an aid and is not necessarily drawn to scale.
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1. The front row of a movie theatre contains 45 seats.

(a) If 42 people are sitting in the front row, prove that there are 10 consecutive seats that
are all occupied.

(b) Show that this conclusion doesn’t necessarily hold if only 41 people are sitting in the
front row.

Solution:

(a) We first number the seats in the row in order from 1 to 45. Suppose on the contrary that
every group of 10 consecutive seats contains an unoccupied seat. We split the 45 seats into
the following five groups.

S1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
S2 = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
S3 = {21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
S4 = {31, 32, 33, 34, 35, 36, 37, 38, 39, 40}
S5 = {41, 42, 43, 44, 45}

Since each of S1, S2, S3, S4 consists of 10 consecutive seats, each of S1, S2, S3, S4 contains an
unoccupied seat. This implies that there are at least 4 unoccupied seats. Hence, at most
41 seats are occupied. This contradicts that there are 42 people seated in the front row.
Therefore, there are 10 consecutive seats that are all occupied. �

(b) We give an example of how 41 people can be seated without ten consecutive seats being
occupied. Equivalently, we give the location of 45 − 41 = 4 empty seats such that every set
of ten consecutive seats contains an empty seat. If we leave seats 10, 20, 30, 40 empty, then
every group of ten consecutive seats contains an empty seat, since every set of ten consecutive
numbers contains a seat whose right-most digit is 0. �

2. Given a positive integer m, let d(m) be the number of positive divisors of m. Determine all
positive integers n such that d(n) + d(n + 1) = 5.

Solution: The answers are n = 3 and n = 4.

Since d(m) is a positive integer for all positive integers m, we have (d(n), d(n + 1)) =
(1, 4), (2, 3), (3, 2) or (4, 1). Note that the only positive integer m satisfying d(m) = 1 is
m = 1. Therefore, if d(n) = 1, then n = 1. But d(2) = 2 �= 4. Therefore, d(n) �= 1. If
d(n + 1) = 1, then n + 1 = 1. Hence, n = 0, which is not a positive integer. Therefore,
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(d(n), d(n + 1)) = (2, 3) or (3, 2).

Note that d(m) = 2 if and only if m is prime. If d(m) = 3, then m is composite. However,
m cannot be the product of two distinct integers a, b �= 1, since then 1, a, b,m would all be
positive divisors of m, implying d(m) ≥ 4. The only positive integers m satisfying d(m) = 3
are squares of a prime number. Therefore, if (d(n), d(n + 1)) = (2, 3), then n is prime and
n + 1 is the square of a prime. Similarly, if (d(n), d(n + 1)) = (3, 2), then n is a square of a
prime and n + 1 is prime.

If d(n) = 2 and d(n+1) = 3, then n = p and n+1 = q2 for some primes p and q. This implies
p = q2 − 1 = (q + 1)(q − 1). Since p is prime, q − 1 = 1, i.e. q = 2. Thus, n + 1 = q2 = 4,
i.e. n = 3. We check that n = 3 is a solution by noting that d(3) + d(4) = 2 + 3 = 5. If
d(n) = 3 and d(n + 1) = 2, then n = p2 and n + 1 = q for some primes p and q. This implies
that q = p2 + 1. If p is odd, then p ≥ 3. Hence, q is an even positive integer greater than or
equal to 32 + 1 = 10, implying that q is composite. This contradicts q being prime. Hence,
p is even, i.e. p = 2. Then n = p2 = 4. We check that n = 4 is a solution by noting that
d(4) + d(5) = 3 + 2 = 5. So the only possible solutions are n = 3 and n = 4. �

3. We say that (a, b, c) form a fantastic triplet if a, b, c are positive integers, a, b, c form a geomet-
ric sequence, and a, b + 1, c form an arithmetic sequence. For example, (2, 4, 8) is a fantastic
triplet. Prove that there exist infinitely many fantastic triplets.

Solution: Note that (2, 4, 8) and (8, 12, 18) are fantastic triplets. We will now show that
(2m2, 2m(m + 1), 2(m + 1)2) is a fantastic triplet for every positive integer m. This shows
that there are infinitely many fantastic triplets. Note that this sequence has a common ra-
tio of (m + 1)/m. Therefore, 2m2, 2m(m + 1), 2(m + 1)2 is a geometric sequence. Finally,
(2m2, 2m(m+1)+1, 2(m+1)2) = (2m2, 2m2+2m+1, 2m2+4m+2) is an arithmetic sequence,
with common difference 2m+1. Therefore, (2m2, 2m(m+1), 2(m+1)2) is a fantastic triplet. �

Comment: The following is a proof that all fantastic triplets are of the form (2m2, 2m(m +
1), 2(m + 1)2) or (2(m + 1)2, 2m(m + 1), 2m2), where m is a positive integer.

Note that (a, b, c) is a fantastic triplet if and only if (c, b, a) is a fantastic triplet. Hence, we
may assume that a ≤ b ≤ c.

Since a, b, c is a geometric sequence, b =
√

ac. Since a, b + 1, c is an arithmetic sequence,

b + 1 =
a + c

2
.
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Substituting b =
√

ac into this equation yields
√

ac + 1 = a+c
2

⇒ 2
√

ac + 2 = a + c
⇒ 2 = a + c − 2

√
ac

⇒ 2 = (
√

a −√
c)2.

Since a ≤ c,
√

c −√
a =

√
2. We rewrite this as

√
c =

√
a +

√
2. Squaring both sides yields

c = a + 2 + 2
√

2a.

Since c is an integer and 2a is an integer, 2a is a perfect square. Since 2a is even, 2a is an even
perfect square. Therefore, there exists a positive integer m such that 2a = (2m)2. There-
fore, a = 2m2. Hence,

√
c −

√
2m2 =

√
2, which implies that

√
c =

√
2(1 + m). Therefore,

c = 2(m + 1)2. Hence, b =
√

ac = 2m(m + 1).

Therefore, (a, b, c) = (2m2, 2m(m + 1), 2(m + 1)2) for some positive integer m. We claim
that this is a fantastic triplet for any positive integer m. This will show that there are in-
finitely many fantastic triplets. (In fact, we have shown that these are all of the fantastic
triplets.) By construction of b, we have that a, b, c is a geometric sequence. It remains to
show that a, b + 1, c is an arithmetic sequence. Note that a = 2m2, b + 1 = 2m2 + 2m + 1 and
c = 2(m + 1)2 = 2m2 + 4m + 2. Clearly, a, b + 1, c is an arithmetic sequence (with common
difference 2m + 1). Therefore, (a, b, c) = (2m2, 2m(m + 1), 2(m + 1)2) is a fantastic triplet for
any positive integer m. �

4. Let ABC be a triangle such that ∠BAC = 90◦ and AB < AC. We divide the interior of the
triangle into the following six regions:

S1 = set of all points P inside ΔABC such that PA < PB < PC
S2 = set of all points P inside ΔABC such that PA < PC < PB
S3 = set of all points P inside ΔABC such that PB < PA < PC
S4 = set of all points P inside ΔABC such that PB < PC < PA
S5 = set of all points P inside ΔABC such that PC < PA < PB
S6 = set of all points P inside ΔABC such that PC < PB < PA.

Suppose that the ratio of the area of the largest region to the area of the smallest non-empty
region is 49 : 1. Determine the ratio AC : AB.

Solution: We recall that given two distinct points M,N , let � be the perpendicular bisector
of MN , i.e. the line perpendicular to MN passing through the midpoint of MN . Then
the set of all points P such that PM < PN is the set of all points in the half-plane of �
containing M . Similarly, the set of all points P such that PM > PN is the set of all points
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in the half-plane of � containing N . We will note this property by (*).

Back to the original problem. Let D,E,F be the midpoints of BC,CA,AB, respectively.
Since ∠BAC = 90◦, DF is the perpendicular bisector of AB. Similarly, DE is the perpen-
dicular bisector of AC. Consider the perpendicular bisector of BC; this line passes through
the point D. Since AB < AC, this perpendicular bisector passes through side AC, say at a
point Q. We now characterize S1, S2, S3, S4, S5, S6.

By (*), S1 is the quadrilateral AFDQ, S2 is triangle QDE, S3 is triangle BDF . S4 is empty.
S5 is triangle DCE and S6 is empty. Since S4 and S6 are empty, they are neither the largest
region nor the smallest non-empty region.

A

B C

Let [X] be the area of a region X. Now let AF = FB = 2, AE = EC = x, and EQ = y.
Then [S3] = [S5] = x, [S2] = y, and [S1] = 2x − y. Since x > y, S1 must be the largest
region and S2 must be the smallest non-empty region, implying (2x− y)/y = 49, or x = 25y.
Since �EDC is similar to �EQD, x/2 = 2/y, which implies that xy = 4. Combining this
with x = 25y yields 25y2 = 4. Hence, y = 2/5. Therefore, x = 10. We conclude that
AC : AB = 2x : 4 = 20 : 4 = 5 : 1. �

5. Given a positive integer n, let d(n) be the largest positive divisor of n less than n. For
example, d(8) = 4 and d(13) = 1. A sequence of positive integers a1, a2, . . . satisfies

ai+1 = ai + d(ai),

for all positive integers i. Prove that regardless of the choice of a1, there are infinitely many
terms in the sequence divisible by 32011.

Solution: For each positive integer m, let f(m) be the largest positive integer t such that 3t

divides m. It suffices to show that there are infinitely many terms in the sequence satisfying
f(ai) ≥ 2011. I claim that for any positive index r, there exists a positive index s > r such
that f(as) > f(ar). This claim will imply the result of the problem, since by this claim,
eventually, there is a term in the sequence divisible by 32011. By this same claim, there is a
term after this which is also divisible by 32011. Repeatedly applying this claim yields infinitely
many terms in the sequence divisible by 32011.
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We will consider two cases: when ar is even and when ar is odd.

If ar is even, then d(ar) = ar/2. Therefore, ar+1 = ar + ar/2 = 3ar/2. Then f(ar+1) =
f(ar) + 1. By setting s = r + 1, we have proven the claim.

If ar is odd, then let p be the smallest prime divisor of ar. We will consider two subcases:
when ar is not divisible by 3 and when ar is divisible by 3.

If ar is not divisible by 3, then p ≥ 5. Note that since ar is odd, every divisor of ar is
odd. In particular, d(ar) is odd. Then ar + d(ar) is even, i.e. ar+1 is even. Note also that
d(ar) = ar/p. Therefore,

ar+1 =
p + 1

p
· ar.

Since p ≥ 5, p �= 3. Hence, f(ar+1) ≥ f(ar). Since ar+1 is even, from the case where ar is
even, we have that f(ar+2) > f(ar+1) ≥ f(ar). Hence, our claim is shown by setting s = r+2.

Finally, if ar is divisible by 3, then p = 3. Then

ar+1 =
4
3
· ar.

Therefore, f(ar+1) = f(ar) − 1. However, note that ar+1 is divisible by 4. Hence,

ar+2 =
3
2
· ar+1.

Therefore, f(ar+2) = f(ar+1) + 1. Hence, f(ar+2) = f(ar). Since ar+1 is divisible by 4,
ar+2 is divisible by 2. From the case where ar is even, we have f(ar+3) > f(ar+2) = f(ar).
Therefore, our claim is proved by setting s = r + 3.

This proves the problem statement. �

6. Determine whether there exist two real numbers a and b such that both (x−a)3 +(x−b)2 +x
and (x − b)3 + (x − a)2 + x contain only real roots.

Solution: The answer is no.

Suppose (x − a)3 + (x − b)2 + x contain only real roots. Let r, s, t be real roots of (x − a)3 +
(x − b)2 + x = x3 − (3a − 1)x2 + (3a2 − 2b + 1)x − (a3 − b2). Then

(x − r)(x − s)(x − t) = x3 − (3a − 1)x2 + (3a2 − 2b + 1)x − (a3 − b2).

7



The left hand side simplifies to

x3 − (r + s + t)x2 + (rs + st + tr)x − rst.

Therefore, r + s + t = 3a − 1 and rs + st + tr = 3a2 − 2b + 1. Note that

(r + s + t)2 = r2 + s2 + t2 + 2(rs + st + tr)

=
(

r2+s2

2 + s2+t2

2 + t2+r2

2

)
+ 2(rs + st + tr)

≥ (rs + st + tr) + 2(rs + st + tr)
= 3(rs + st + tr).

(Here, we use the inequality x2 + y2 ≥ 2xy for all real numbers x, y, which is true since this
inequality is equivalent to (x − y)2 ≥ 0.) Therefore,

(3a − 1)2 ≥ 3(3a2 − 2b + 1).

Equivalently, 6a − 6b ≤ −2. Similarly, since (x − b)3 + (x − a)2 + x contain only real roots,
6b − 6a ≤ −2. Adding these two inequalities yields 0 ≤ −4, which is a contradiction. There-
fore, both (x−a)3 +(x− b)2 +x and (x− b)3 +(x−a)2 +x cannot contain only real roots. �

7. Six tennis players gather to play in a tournament where each pair of persons play one game,
with one person declared the winner and the other person the loser. A triplet of three players
{A,B,C} is said to be cyclic if A wins against B, B wins against C and C wins against A.

(a) After the tournament, the six people are to be separated in two rooms such that none
of the two rooms contains a cyclic triplet. Prove that this is always possible.

(b) Suppose there are instead seven people in the tournament. Is it always possible that the
seven people can be separated in two rooms such that none of the two rooms contains a
cyclic triplet?

Solution:

Solution 1 to (a): Let A,B,C,D,E, F be the six tennis players and w1, w2, w3, w4, w5, w6

be the number of wins by A,B,C,D,E, F , respectively. Define a dominating triplet to be
any triplet that is not a cyclic triplet, A dominating triplet has the property that one team
in the triplet wins 2 games, one team wins 1 game, one team wins 0. For each dominating
triplet, let the team who wins two games within the triplet be called the dominator.

For each team, we count the number of dominating triplets for which the team is the domi-
nator. For any team T , let S be the set of teams that T wins against. Note that every pair
of teams in S, in conjunction with T , form the set of all dominating triplets for which team
T is the dominator. Therefore, if we let w be the number of wins that team T has, then the
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number of dominating triplets for which team T is the dominator is
(w

2

)
.

Hence, the number of dominating triplets where A,B,C,D,E, F are dominators is(
w1

2

)
,

(
w2

2

)
,

(
w3

2

)
,

(
w4

2

)
,

(
w5

2

)
,

(
w6

2

)
,

respectively. Since every dominating triplet contains a unique dominator, the total number
of dominating triplets is

6∑
i=1

(
wi

2

)
=

6∑
i=1

wi(wi − 1)
2

=
1
2
·

6∑
i=1

(
w2

i − wi

)
=

1
2
·
(

6∑
i=1

w2
i −

6∑
i=1

wi

)
.

Note that since there are
(6
2

)
= 15 games are played, w1 + w2 + w3 + w4 + w5 + w6 = 15.

Hence, the number of dominating triplets is

1
2
·
((

6∑
i=1

w2
i

)
− 15

)
.

Note that by Cauchy-Schwarz inequality, we have

(w2
1 + w2

2 + . . . + w2
6)(1 + 1 + . . . + 1) ≥ (w1 + w2 + . . . + w6)2.

Hence,
6∑

i=1

w2
i ≥ (w1 + w2 + w3 + w4 + w5 + w6)2

1 + 1 + 1 + 1 + 1 + 1
=

152

6
> 37.

Therefore, the number of dominating triplets is greater than

1
2
· (37 − 15) = 11.

Hence, the number of dominating triplets is at least 12. Since the number of dominating
triplets equals to the number of triplets total minus the number of cyclic triplets and the
former is equal to

(
6
3

)
= 20, there are at most 8 cyclic triplets. But there are ten ways to

split a group of six people into two rooms of three people each. (This is shown by noting that
there are

(5
2

)
= 10 choices of two people that A can share a room with.) Since 8 < 10, one of

these groupings does not contain a cyclic triplet. This solves the problem. �

Solution 2 to (a): Let A,B,C,D,E, F be the six tennis players. Since
(6
2

)
= 15 games are

played and there are six players, there is one player that is the winner of �15/6	+1 = 3 games.
Without loss of generality, suppose A won three games, say against B,C,D. If {B,C,D}
is not cyclic, then {A,B,C,D} does not contain a cyclic triplet. Clearly, {E,F} does not
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containg a cyclic triplet, since there are only two teams. Therefore, we can split the six peo-
ple into the two groups {A,B,C,D} and {E,F}, with neither group containing a cyclic triplet.

Otherwise, suppose {B,C,D} is cyclic. By symmetry, suppose that B wins against C, C
wins against D and D wins against B. Now, by symmetry, suppose E wins against F .

If {B,E,F} is not cyclic, then {A,C,D} and {B,E,F} are both not cyclic, which results
in two rooms not containing a cyclic triplet. The same results hold if any of {C,E,F} and
{D,E,F} is not cyclic. Therefore, it remains to handle the case when {B,E,F}, {C,E,F},
{D,E,F} are each cyclic. Since E wins against F , F wins against B,C and D and E
loses against B,C and D. Then {A,B,F} is not cyclic since both A,F won against B and
{C,D,E} is not cyclic, since C wins against both D and E. Hence, splitting the six people
into the following two groups {A,B,F} and {C,D,E} would yield both rooms not containing
a cyclic triplet. �

(b) No, it is not always possible. Let A0, A1, . . . , A6 be seven people. Now suppose Ai beats
Aj if and only if j − i ≡ 1, 2, 4 (mod 7). Note that ±1,±2,±4 (mod 7) cover all six non-zero
modulo classes (mod 7). Hence, this assignment of who wins in each game is consistent.

A

B C

Since there are seven players, when splitting the seven people into two rooms, one room con-
tains at least four people. I claim that a cyclic triplet exists in the room containing at least
four people.

Amongst the four people are chosen from A0, A1, . . . , A6, then there are two people of the
form Ai and Ai+1 for some non-negative integer i. By cyclicity, suppose that A0 and A1

are among the four people in the room. Note that {A0, A1, A3} and {A0, A1, A5} are cyclic.
Hence, if A3 or A5 is amongst the other two people in the room aside from A0, A1, then the
room contains a cyclic triplet. If A2 is amongst the group of four, then note that {A0, A2, A6}
and {A1, A2, A4} are both cyclic. The only remaining case is when the group of four is
{A0, A1, A4, A6}. Note that {A0, A4, A6} is cyclic. Therefore, we have shown that regardless
of which four people are chosen from A0, . . . , A6, three of the four people form a cyclic triplet.
�

8. Suppose circles W1 and W2, with centres O1 and O2 respectively, intersect at points M and
N . Let the tangent on W2 at point N intersect W1 for the second time at B1. Similarly, let

10



the tangent on W1 at point N intersect W2 for the second time at B2. Let A1 be a point on
W1 which is on arc B1N not containing M and suppose line A1N intersects W2 at point A2.
Denote the incentres of triangles B1A1N and B2A2N by I1 and I2, respectively.2

N

MB1

B2

A1 A2

O1 O2

Show that
∠I1MI2 = ∠O1MO2.

Solution: Since B1N is tangent to W2 at N , ∠B1NO2 = 90◦. Note that ∠O2MN = ∠O2NM
in triangle ΔO2MN . Hence, ∠MNO2 < 90◦ = ∠B1NO2. Therefore, B1 is on arc MN of
circle W1 exterior of circle W2. Similarly, B2 is on arc MN of circle W2 exterior of circle W1.
Since A1 is on arc B1N of circle W1 not containing M , A2 is on arc B2N of circle W2 not
containing M .

By the tangent-chord property, ∠B1A1N = ∠B1NB2 = ∠B2A2N and ∠A1B1N = 180◦ −
∠A1NB2 = ∠B2NA2. Therefore, ΔB1A1N is similar to ΔNA2B2. (1)

Again, by the tangent-chord property, ∠MB2N = ∠MNB1 and ∠NMB2 = 180◦−∠B1NB2 =
∠B1MN . Therefore, ΔMB1N ∼ MNB2. (2)

Combining (1) and (2) yields that quadrilateral MB1A1N and quadrilateral MNA2B2 are
similar. These two quadrilaterals are cyclic.

Since I1 is the incentre of ΔB1A1N and I2 is the incentre of ΔNA2B2, by these simi-
larities, we have that ∠I1MN = ∠I2MB2. Therefore, ∠I1MI2 = ∠I1MN + ∠NMI2 =
∠I2MB2 + ∠NMI2 = ∠NMB2.

2Given a triangle ABC, the incentre of the triangle is defined to be the intersection of the angle bisectors of A, B
and C. To avoid cluttering, the incentre is omitted in the provided diagram.
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Since O1, O2 are the centres of MB1A1N and MNA2B2, respectively, ∠O1MN = ∠O2MB2.
Therefore, ∠O1MO2 = ∠O1MN + ∠NMO2 = ∠O2MB2 + ∠NMO2 = ∠NMB2. Therefore,
∠I1MI2 = ∠O1MO2, as desired. �
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