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Introduction

Consider the following famous inequality: If A,B,C,D are four points in the
plane, then AB.CD + BC.AD ≥ AC.BD (Ptolemy’s inequality). A very short
proof uses complex numbers: introducing the affixes a, b, c, d of A,B,C,D, the
equality (b − a)(d − c) + (c − b)(d − a) = (c − a)(d − b) is readily checked. The
familiar properties of the modulus of a complex number (in particular the triangle
inequality) then give

|c− a|.|d− b| = |(b− a)(d− c) + (c− b)(d− a)| ≤ |b− a|.|d− c|+ |c− b|.|d− a|

and Ptolemy’s inequality follows at once! This gem of a proof, now well-known,
seems to date back to 1914 ([1]). In this number, we present some results in the
same vein, related to more or less recent problems.

Hayashi’s Inequality

Hayashi’s inequality, although less known, appears in problems from time to time.
To name a couple of recent examples, it is the main argument of the solutions to
the American Mathematical Monthly problem 11536 proposed in November 2010
and to problem OC41 [2011 : 424 ; 2012 : 361]. The inequality can be stated as
follows:

If P is a point in the plane of a triangle ABC, then

PA · PB
CA · CB

+
PB · PC
AB ·AC

+
PC · PA
BC ·BA

≥ 1.

Various identities for complex numbers can be taken as the starting point of the
proof. My favourite one follows from a decomposition in partial fractions which
leads to

1

(p− a)(p− b)(p− c)
=

1

(b− a)(c− a)
· 1

p− a
+

1

(c− b)(a− b)
· 1

p− b
+

1

(a− c)(b− c)
· 1

p− c
.

The proof then proceeds by multiplying by (p−a)(p− b)(p− c) and taking moduli
as in the proof of Ptolemy’s inequality above.

Let us connect Hayashi’s inequality to a close one which involves, besides triangle
ABC, two points M,N :

CM · CN
CA · CB

+
AM ·AN
AB ·AC

+
BM ·BN
BC ·BA

≥ 1. (1)
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The method is similar, the inequality being deduced as above from the identity

(m− a)(n− a)

(b− a)(c− a)
+

(m− b)(n− b)
(c− b)(a− b)

+
(m− c)(n− c)
(a− c)(b− c)

= 1. (2)

However, the proof of this identity is a good opportunity to apply some results
obtained in a prior Focus On (No 7). Indeed, introducing D(z) = (z − a)(z −
b)(z − c), the left-hand side L of (2) is

(m− a)(n− a)

D′(a)
+

(m− b)(n− b)
D′(b)

+
(m− c)(n− c)

D′(c)

that is,

mn

Å
1

D′(a)
+

1

D′(b)
+

1

D′(c)

ã
− (m+ n)

Å
a

D′(a)
+

b

D′(b)
+

c

D′(c)

ã
+

Å
a2

D′(a)
+

b2

D′(b)
+

c2

D′(c)

ã
and finally L = mn× 0− (m+ n)× 0 + 1 = 1.

Incidentally, another interesting application of identity (2) is a variant of solution
to problem 2595 ([2000 : 498 ; 2001 : 557]), which offers a case of equality in (1).

Given that M and N are points inside the triangle ABC such that
∠MAB = ∠NAC and ∠MBA = ∠NBC, prove that

AM ·AN
AB ·AC

+
BM ·BN
BC ·BA

+
CM · CN
CA · CB

= 1.

Keeping the notations a, b, c,m, n for the affixes of A,B,C,M,N , the additional
hypothesis on M and N leads to

arg

Å
(m− a)(n− a)

(b− a)(c− a)

ã
= arg

Å
(m− b)(n− b)
(c− b)(a− b)

ã
= 0

(since ∠(
−−→
BM,

−−→
BA) = ∠(

−−→
BC,

−−→
BN) and ∠(

−−→
AM,

−−→
AB) = ∠(

−→
AC,
−−→
AN)).
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As a result, both
(m− a)(n− a)

(b− a)(c− a)
and

(m− b)(n− b)
(c− b)(a− b)

are positive real numbers.

From (2),
(m− c)(n− c)
(a− c)(b− c)

is a real number and because M and N are interior to

the triangle, we must have ∠(
−→
CA,
−−→
CN) = ∠

−−→
CM,

−−→
CB), so that

(m− c)(n− c)
(a− c)(b− c)

is a

positive real number as well. Taking moduli in (2) then yields the desired equality.
Note in passing that M,N are isogonal conjugates with respect to ABC.

More examples

Prompted by expressions evoking the modulus of a complex number, one can
sometimes introduce complex numbers advantageously. Here are two examples.

We start with problem 3092, part (a) [2005 : 544,546 ; 2006 : 526]:

Let a, b, and c be positive real numbers such that a+ b+ c = abc. Find
the minimum value of

√
1 + a2 +

√
1 + b2 +

√
1 + c2.

The statement then referred to the previous problem 2814 of which one of the
featured solutions (by Guersenzvaig) used complex numbers. We can mimic the
method as follows.

Since
√

1 + a2 +
√

1 + b2 +
√

1 + c2 = |1 + ia|+ |1 + ib|+ |1 + ic| ≥ |3 + i(a+ b+ c)|
(by the triangle inequality), we have√

1 + a2 +
√

1 + b2 +
√

1 + c2 ≥
»

9 + (a+ b+ c)2.

Now, since 1
ab + 1

bc + 1
ca = 1 (from a+ b+ c = abc), the harmonic-arithmetic mean

inequality gives

ab+ bc+ ca ≥ 3
1
3

(
1
ab + 1

bc + 1
ca

) = 9.

Thus, (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) ≥ 3(ab+ bc+ ca) ≥ 27 and we
finally obtain √

1 + a2 +
√

1 + b2 +
√

1 + c2 ≥ 6.

Observing that for a = b = c =
√

3, we have a+ b+ c = abc and the equality case
in the above inequality, we conclude that the required minimum value is 6.

Another example is provided by problem 3686 that I proposed in 2011 [2011 :
456, 458 ; 2012 : 391].

Let a, b, and c be real numbers such that abc = 1. Show thatÅ
a− 1

a
+ b− 1

b
+ c− 1

c

ã2
≤ 2

Å
a+

1

a

ãÅ
b+

1

b

ãÅ
c+

1

c

ã
.
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The problem attracted various methods and three solutions were featured. My
proposed solution rested upon complex numbers: Since abc = 1, we have

2

Å
a+

1

a

ãÅ
b+

1

b

ãÅ
c+

1

c

ã
= 2(a2 + 1)(b2 + 1)(c2 + 1)

= 2|(a+ i)(b+ i)(c+ i)|2

= 2|(1− a− b− c) + i(ab+ bc+ ca− 1)|2

so that

2

Å
a+

1

a

ãÅ
b+

1

b

ãÅ
c+

1

c

ã
= 2

[
(a+ b+ c− 1)2 + (1− (ab+ bc+ ca))2

]
.

But, 2(X2 + Y 2) ≥ (X + Y )2 for all real numbers X,Y , hence

2

Å
a+

1

a

ãÅ
b+

1

b

ãÅ
c+

1

c

ã
≥ (a+ b+ c− ab− bc− ca)2

=

Å
a− 1

a
+ b− 1

b
+ c− 1

c

ã2
.

As usual, we conclude this number with a couple of exercises.

Exercises

1. Prove the identity

vw(v − w) + wu(w − u) + uv(u− v) + (v − w)(w − u)(u− v) = 0

where u, v, w are complex numbers and deduce another proof of Hayashi’s inequal-
ity.

2. Using complex numbers, prove the identity

(b2 + c2)(c2 + a2)(a2 + b2) = (a2b+ b2c+ c2a− abc)2 + (ab2 + bc2 + ca2 − abc)2

for real numbers a, b, c. Deduce that if a, b, c are the side lengths of a triangle,
then

2(b2 + c2)(c2 + a2)(a2 + b2) > (a3 + b3 + c3)2.
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