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SOLUTIONS

No problem is ever permanently closed. The editor is always pleased
to consider for publication new solutions or new insights on past problems.
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3059. [2005 : 334, 337] Proposed by Gabriel Dospinescu, Paris, France.

Let a, b, ¢, d be real numbers such that a? 4+ b2 + ¢? + d? < 1. Prove
that 5
ab+ bc+ cd + da + ac + bd < 4abed + 1

1. Solution by Dionne Bailey, Elsie Campbell, and Charles R. Diminnie,
Angelo State University, San Angelo, TX, USA, modified by the editor.

Note first that the AM—-GM Inequality implies that
4/ (abed)? < a2 +b>+c2+d? < 1,
and hence, \/|abcd| < %, or
labed| < L. €))

Further, equality is attained in (1) if and only if a? = b2 =c? = d2 and
2—i—b2—|—c +d? = 1; thatis, ifand only if a2 = b2 = %2 = d? =
For real numbers = and y, the Cauchy-Schwarz Inequality 1mp11es that

z+y < V2V/x? +y?,

with equality if and only if £ = y > 0. Usingthis and the AM-GM Inequality,
we obtain

(ab+ cd) + (bc+da) < V2./(ab+ cd)? + (bc + da)?
V2\/(a? + ¢2) (b2 + d?) + 4abcd

< v2\/(2(a® + 2+ b2 + d2)) + dabed
< V2\/! 4 4abed = Y217 16abed,

with equality if and only if ab+cd = bc+da > 0 and a®+¢* = b +d? = 1.
Similarly, we get
(bc + da) + (ac + bd) < “2/1+ 16abed,
with equality if and only if b+ da = ac+bd > 0and a®+b* = > +d? = 1,

and
(ab + cd) + (ac + bd) < Y2/TF 16abed,

with equality if and only if ab+cd = ac+bd > 0 and a2 +d? = b%2+c? =

N[ =
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Therefore,

ab + bc + cd + da + ac + bd
= 1[(ab+ cd) + (bc + da) + (bc + da) + (ac + bd)
+ (ab + cd) + (ac + bd)]
< 3Y2/T ¥ 16abed, )
with equality if and only if ab + ¢d = bec + da = ac + bd > 0 and
a?=b=c*=d?=1.
Let x = 1 4+ 16abed. From (1), we have 0 < z < 2, and hence

(m+4)2—(3\/§\/5)2 — 2210z +16 = (z—8)(x—2) > 0,

with equality if and only if x = 2. Thus,

3v2v/1 + 16abed < 16abed + 5, 3)

with equality if and only if abed = 1=

Finally, combining (1), (2), and (3), we obtain

ab + be + cd + da 4+ ac+ bd < 22/TF 16abed < 4abed + 3,

L and

d=+3.

with equality if and only if a? = b? = 2 = d? =
ab+cd = bc+da = ac+bd > 0; thatis, if and only if a

PN

, abed =
b=c=

I1. Solution by José Luis Diaz-Barrero, Universitat Politécnica de Catalunya,
Barcelona, Spain; and the proposer.

Let ¢t be a real number, and let S = ab + bc + ¢d + da + ac + bd.
Consider the polynomial
A(x) = (z—a)(z—b)(z—c)(z—d)
= z*— (a+b+c-{—d):c3-I—S:c2
— (abc 4 bed + abd 4 acd)x + abed .

Since |p + iq| > |p|, we obtain

2
|AGt) ] = ‘t“ +it® Y a— St —it Y  abc+ abed
cyclic cyclic

> |t* — St + abed|” .

On the other hand,

|AGit)]? = A(it) - A(it) = [[(a—it)- [[(a+it) = ] (a®+¢?).

cyclic cyclic cyclic
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Thus,
|t — 5t2 + abed|” < ] (a® +¢2).
cyclic

Set t = 1/2 in this inequality, and then use the AM-GM Inequality and the
given condition to obtain

L _1stabed® < [ (a®+1) < (iZ(a2+%))4

cyclic cyclic
4
= (3@ +b+c2+d*+1)) < .

Therefore, |5 — 25 + abed| < 3, which yields S < 4abed + 2, completing
the proof.

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria. There
were two incorrect (incomplete) solutions submitted.

B WSS L W

3060. [2005 : 334, 337] Proposed by Gabriel Dospinescu, Paris, France.

Let a and b be positive real numbers such that a < 2. For each integer
n > 1, let z,, = |an + b]. Prove that the sequence {x,, },,>1 has an infinite
number of terms whose sum of digits is even. (Note: |z] is the greatest
integer not exceeding z.)

Solution by Tom Leong, Brooklyn, NY, USA, with some detail added by the
editor.

If 0 < a <1, then {z,,} assumes every integer value greater than or
equal to |a + b, and the result is clearly true. Hence, we may assume that
1 < a < 2. Then all the terms of the sequence {z,,} are distinct. It is easy to
verify (by induction or otherwise) that for k£ > 2, exactly half of the 9(10%*—1)
positive integers with k digits have an even sum of digits (and half have an
odd sum).

The number of terms x,, with k digits is equal to the number of positive
integers n such that 10*~' < an + b < 10*. We rewrite these inequalities

as
101 —p 10k — b
T <n< =7
a a
If k is large enough so that 10¥—! > b, then all integers n satisfying the above
inequalities are positive. The number of such integers is at least

10 —b 10! —b 9(10%—1)

a a a

Since a < 2, this number will be greater than 9(10%~1) /2 for all & sufficiently

large (large enough so that 9(10%~1) > (1 — %)_1).
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Thus, for all k sufficiently large, the number of terms x,, with k digits
is greater than the number of k-digit positive integers with an odd sum of
digits, and hence there exists a term z,, with k digits and an even sum of
digits. The desired result follows.

Also solved by the proposer.

——— | NS

30061. [2005 : 335, 337] Proposed by Gabriel Dospinescu, Paris, France.

Find the smallest non-negative integer n for which there exists a non-
constant function f : Z — [0, co) such that for all integers  and y,

@) f(zy) = f(=)f(y), and
(b) 2f(z® +9?) — f(x) — f(y) €{0,1,..., n}.
For this value of n, find all the functions f which satisfy (a) and (b).

Solution by Michel Bataille, Rouen, France, modified by the editor.
The solution makes use of the following known result.

Proposition 1. If p is prime, p = 3 (mod 4), and a and b are integers such
that p | (a® + b2),thenp | a and p | b.

We show that the smallest nisn = 1.

Let f : Z — [0,00) be a non-constant function satisfying (a). Since
F(1) = f(1-1) = (£(1))* we have f(1) = 1 or f(1) = 0. But the latter
yields f(z) = f(x-1) = f(x)f(1) = 0 for all z € Z, contradicting the fact
that f is not constant. It follows that f(1) = 1. Similarly, f(—1) = 1 and
f(0) =o0.

If n = 0, then f cannot satisfy (b), since 2f(x2 +y2) # f(x)+ f(y) for
x = 1 and y = 0. The function fo : Z — [0, 00) defined by f¢(0) = 0 and
fo(x) = 1 for all non-zero integers «, is non-constant and clearly satisfies (a).
Moreover, if Ko(z,y) = 2fo(z* +y?) — fo(z) — fo(y), we have K (z,y) = 0
if x = y = 0; otherwise Ko(z,y) = 2 — fo(x) — fo(y) with at least one of
fo(x), fo(y) equal to 1. In all cases, Ko(x,y) € {0, 1} and fo satisfies (b)
as well.

For n = 1 we will show that in addition to fy, the solutions for f are
the functions f, : Z — [0, 00) defined by f,(x) = 0ifp | z and fp(x) =1
otherwise, where p is prime and p = 3 (mod 4). Such a function f, is
not constant, and satisfies (a) (since p | zy implies p | = or p | y). Let
Ky(z,y) = 2fp(x® +y?) — fp(x) — fp(y). lfp| zand p | y, thenp | 2% +y?
and K,(z,y) = 0. If p | z, and p { y, then p does not divide > + y?, and
K,(z,y) = 1. Finally, if p{ z and p { y, then p t 2 + y? by Proposition 1,
and K,(z,y) = 0. Inall cases K, (x,y) € {0, 1} and f, satisfies (b); whence,
fp is a solution.
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Conversely, let f be a solution. We will show that either f = fo or
f = fp for some prime p = 3 (mod 4). First, we will show that f(x) is
either 0 or 1 for all x € Z. Let = € Z be such that f(x) # 0. Condition (a)
implies that f(x2) = (f(z))* and (b) yields

2(f(x))® — f(x) = 2f(2*+0) — f(z) — £(0) € {0,1}.

It follows that f(x) isequalto 0, 1, or 1/2 for all integer «. Butif f(z) = 1/2
and f(x? + 1) € {0, 1, 1/2}, then (b) does not hold for y = 1.

Next, we will show that f(2) = 1 and f(q) # 0 for any prime gq,
g =1 (mod 4). Since f(1) = 1, from (b) with x = y = 1 we conclude that
f(2) = 1. If gis a prime, g = 1 (mod 4), then there are integers a and &
such that gk = a® + 1 and

2f(k)f(q) = 2f(kq) = 2f(a® +1%) = f(a) + f(1) +¢,

where ¢ is equal to 0 or 1. Therefore, 2f(k)f(q) > f(1) = 1 # 0 and
f(a) #0.

Suppose f # fo. Then f(xo) = 0 for some integer xo with |zo| > 1.
By condition (a), we must have f(p) = 0 for some prime factor p of xo and
p = 3 (mod 4). No other prime p’ = 3 (mod 4) can satisfy f(p’) = 0.
Otherwise, we would have 2f(p? + p'?) € {0, 1}; whence f(p? + p’?) = 0.
But then there is a prime factor p” of p? + p’? such that f(p”’) = 0; thus,
p” = 3 (mod 4). By Proposition 1, this is a contradiction since p”’ cannot
be a factor of both p and p’. It follows that f(x) = 0 if and only if p is a
factor of z and f = f,.

Also solved by the proposer.

B e WSS D W

3062. [2005 : 335, 337] Proposed by Gabriel Dospinescu, Paris, France.

Let a, b, c be positive real numbers such that a +b+ ¢ = 1. Prove that

a b c 3
(ab +be + ca) <b2+b+c2+c+a2+a) = 4’

Essentially the same solution by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain; and the proposer.

Let = be any positive real number. In the Cauchy-Schwarz Inequality
\7|2 \?\2 > (W - ?)2, we set

— _ (va Vb e o
vo= (:c-l—b’w-l—c’a:-l—a) and vo= (\/E’\/B’\/E) ’

Then, since |¥'| = a + b + ¢ = 1, we obtain

a b c a b c 2
(:!:-l-b)"’—i_(:v-l-c)z_‘_(:v+a)2 2 (w+b+w+c+a:+a) ’
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Now use the Cauchy-Schwarz Inequality again, this time with

T = a b c
- z+b’Ve+e'Vax+a

and v = (\/a(w—i-b),\/b(:c—l—c),\/c(:c—}—a)).

Since w -7 =a+b+c=1, weget

a b c 2 1
( tote) 2 z
z+b x+c xz+a (a(xz 4+ b) + b(x + ¢) + c(z + a))
1
(z + ab+ bc + ca)?

Then

1 1
a b c dx
/0 <(:c+b)2+(:c+c)2+(w—}—a)2> dr 2 /0 (z + ab + bc + ca)?’

that is,

a b c 1
b2—{—b+c2+c+a2—|—a 2 (ab+bc+ca)(1+ab+bc+ca)’

Using the well-known inequality 3(ab + bc + ca) < (a + b+ ¢)2, we obtain
ab + bc + ca < . Therefore,

(ab—i—bc—i—ca)( a b ¢ )> 1

b2+b+cz+c+az+a 1+ ab+ be + ca

=~ W

as desired. Equality holds if and only ifa = b = ¢ = %

Also solved by ARKADY ALT, San Jose, CA, USA; DIONNE BAILEY, ELSIE
CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA;
MICHEL BATAILLE, Rouen, France; MIHALY BENCZE, Brasov, Romania; SILOUANOS
BRAZITIKOS, student, Trikala, Greece; OVIDIU FURDUI, student, Western Michigan
University, Kalamazoo, MI, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck,
Austria (two solutions); RONGZHENG JIAO, Yangzhou University, Yangzhou, China; VEDULA
N. MURTY, Dover, PA, USA; and PETER Y. WOO, Biola University, La Mirada, CA, USA.

Janous has also proven the following similar results. If a, b, and c are positive numbers
witha + b+ ¢ =1, then

a b c 3
(ab+bc+ca)(b2+1+c2+1+a2+1) <7

and

1 1 1 9
(ab+bc+ca)<b2+1+c2+1+a2+1> TR

——— | NS
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3063. [2005 : 335, 337] Proposed by Mohammed Aassila, Strasbourg,
France.

Determine all continuous functions f : R — R such that, for all x € R,

f(f(®)) + f(x) = 2z +a,
where a is a real constant.

Solution by Michel Bataille, Rouen, France, expanded by the editor.

It is readily verified that the function f(z) = = + %a is a solution (for
any a) and that, if a = 0, any function of the form f(x) = —2xz + cis a
solution, where c is an arbitrary real constant. We will prove that these are
the only solutions.

Let f be any function that satisfies the given conditions. Clearly, f is
one-to-one, since f(x1) = f(x2) implies 2z; + a = 2z5 + a, from which
we get £, = x,. Being also continuous, f must be strictly monotone on R;
hence, f must have a limit (finite or infinite) as * — oo and as ¢ — —oo.
If lim f(z) = L € R, then lim f(f(x)) + f(z) = f(L) + L (since f is

T— 00 T—> 00
continuous), which contradicts lim (2x¢+a) = co. Thus, lim f(x) = +oo.
Similarly, lim f(z) = *oc. Since f is monotone, either lim f(x) = oo
r— — 00 Tr— 00
and lim f(x) = —oo, or lim f(x) = —ocand lim f(x) = co. Hence,
r——0o0 r—0o0 Tr—r— 00

f is a continuous bijection from R onto R. Now we consider two cases
separately:

Case (i). f is strictly increasing.

Let € R be arbitrary but fixed. Define the sequence {u,,} as follows:
uo = x, w3 = f(x), and up41 = f(u,) for all n > 1. Then the given
functional equation implies that, foralln =0, 1, 2, ...,

Upi2 + Unr1 = 2uy +a. 1

We solve this recurrence relation by the usual method. The characteristic
equation of the corresponding homogeneous relation is > + ¢t — 2 = 0, and
the characteristic roots are 1 and —2. By inspection, a particular solution is
u, = ina. Hence, the general solution of (1) is un, = a + B8(—2)" + ina.
Using a4+ 8 = up = ¢ and a — 208 + ta = uy = f(x), we easily find that

a =3 (2z+ f(2) — ja) and = § (@ — f(x) + ja). Hence,
un = 320+ f(2) - 30) + 5(=2)" (z = f(2) + 50) + jra. )

Since f is increasing, the sequence {u,,} must be monotone; thus, the
sign of u, 1 — u, must be fixed forn = 0, 1, 2, .... The second term on
the right side of (2) reveals that this is possible only if z — f(z) + %a =0.
Since this is true for all z € R, it follows that f(z) = = + 3a.
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Case (ii). f is strictly decreasing.
We first show that a = 0. Let ¢(z) = f(x) — =. Then ¢ is continuous
and strictly decreasing. Since lim ¢(z) = oo and lim ¢(x) = —oo,

we deduce that ¢ has exactly one real root. Thus, there exists a unique real
number zo such that f(z¢) = @o. From 2zo+a = f(f(x0)) + f(w0) = 20,
we then have a = 0.

Let g = f~! denote the inverse of f. For an arbitrary but fixed real
number z, define the sequence {v,} as follows: vo = f(x), v1 = =, and
Up41 = g(vy,) foralln > 1. Since f o f is also a bijection, there exists y € R
such that f(f(y)) = «. Then the functional equation f(f(y)) + f(y) = 2y
becomes x + g(x) = 2g(g(x)), which implies that, foralln =0, 1, 2, ...,

2042 = 29(Vp41) = 29(g(vn)) = g(vp) + vy, = Vng1+ Up.

Solving this recurrence relation as in Case (i), we find that
on = 3(f(@)+22) + 2 (—3)" (f(x) — ).

Letting m = %(f(x) + 2x), we have lim v, = m. From the recurrence

n—oo

relation v, 1 = g(v,), we obtain g(m) = m and hence, f(m) = m. Since
o is the only fixed point of f, we infer that xo = m = 1 (f(x) 4 2z). Since
this is true for all z € R, we conclude that f(x) = —2x + 3z¢9 = —2x + ¢,
where ¢ = 3x. Our proof is complete.

Also solved by ROBERT B. ISRAEL, University of British Columbia, Vancouver, BC;
PETER Y. WOO, Biola University, La Mirada, CA, USA; YUFEI ZHAO, student, Don Mills

Collegiate Institute, Toronto, ON; and the proposer. There were also an incomplete solution
and a solution which gave the correct answers but with faulty argument.

Y e WSS L W

3064 . [2005 : 397, 399] Proposed by J. Chris Fisher, University of Regina,
Regina, SK.

(a) Starting with four points A, B, C, D in the plane, no three of
which are collinear, let P, Q, R, S be the mid-points of AB, CD, AC, BD,
respectively. Let L be the point of intersection of AQ and DP, and let M
be the point of intersection of BR and C'S. Prove that the mid-point of BC
lies on the line LM if and only if AD || BC.

(b) Let Ag, Ay, Ao, A3z, and A, be the vertices of a non-degenerate
pentagon. Define a median to be a line that joins a vertex A; either to the
mid-point of the opposite side A;;2A;_» or to the mid-point of the opposite
diagonal A;;,A;_1 (Where subscripts are taken modulo 5). Prove that the
pentagon is affinely regular if and only if the ten medians are concurrent.

The result is based on a theorem of Zvonco Cerin, Journal of Geometry,
77 (2003), 22-34.

Note: A pentagon is said to be affinely regular if it is the image under
a linear transformation of a regular pentagon or a regular pentagram.
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(a) Solution by Michel Bataille, Rouen, France.

We shall see that the claim in (a) is not correct: although AD || BC
does imply that the mid-point of BC lies on LM, the converse is false. We
choose affine coordinates with the origin at B such that A(0, 2), C(2,0), and
D(2a, 2b) for real numbers a, b. Then P(0,1), Q(1 + a,b), R(1,1), S(a,b),
and the equations of the required lines are:

AQ : b—-2)z—(a+1)y+2(a+1) = 0,
DP: (2b —1)x — 2ay +2a = 0,

BR: r—y = 0,

CS: br—(a—2)y—2b = 0.

From the equations of BR and CS, we find that M (b _2ab+ 3% _2ab+ 2).

Denoting by I the mid-point of BC, we have I(1,0) and I M has equation
2bxz — (b + a — 2)y — 2b = 0. It follows that I lies on the line LM if and
only if L lies on the line IM; that is, the lines AQ, DP, IM pass through a
point:

b—2 —a—1 2a+2

2b—1 —2a 2a = 0,

2b 2—a-—> —2b
or finally,
(1—-0b)(a®> —ab—3a—4b+2) = 0. €))

Observethat AD || BCisequivalentto b = 1. Thus, if AD || BC, then
the relation (1) is satisfied and I lies on LM, as desired. But not conversely—
we may have I on LM but AD not parallel to BC. For example, this is the

case if a = —2 and b = 6 in the calculation above. It is readily checked that
L(%,—%)and M (&, 8), so that I lies on LM (indeed, I is the mid-point

of LM), but AD is not parallel to BC (AD is in the direction of the vector
(—4,10), while BC has the direction vector (2, 0)).

(b) Incomplete solutions by Bataille and the proposer, completed by the
editor.

Any median of a regular pentagon or pentagram is a line of symme-
try: the line from a vertex to the midpoint of the opposite side also passes
through the midpoint of the opposite diagonal, so a regular pentagon has just
five medians, and all five pass through the centre of the circumcircle. Affine
transformations preserve mid-points and concurrency, so the five medians of
affinely regular pentagons and pentagrams are concurrent.

For the converse, we let any four of the vertices of our pentagon, labeled
consecutively, play the role of ABC D from part (a). The concurrence of the
medians says that L = M. We shall see that this is sufficient to prove
that AD || BC and either AD : BC = 7 : 1or BC : AD = 7 : 1,

where 7 = %g is the golden section, which is the ratio of the diagonal of
a regular pentagon to a side. The condition holds for each set of four points;
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thus, we can uniquely construct vertices Az and A4 of an affinely regular
pentagon from any given triangle Aq, A;, As. It therefore remains to show,
in the notation of part (a), that b = 1 and a is either 7 or its reciprocal. To
satisfy the condition that L = M, we must have both AQ and DP meeting
BR:x —y = 0at M. Setting y = x in the equation for DP (in part (a)),

we find that
2a 2b

—2b+14+2a b—a+2'

where the last entry is the x—coordinate of M. The same process with AQ
yields

2(1+a) _ 2b
3—b+a o b—a+2°

These equations represent a pair of conics in the variables a and b,

a? -2 +ab—2a+b = 0,
and a’?—b>—a+20—2 = 0.

Setting b = 1, both these equations reduce to a? — a — 1 = 0, whose
solutionisa = r ora = — 1.

The common points o?these two conics are, therefore, (a,b) = (7,1),
(—%, 1), (2,0), and the point at infinity of the line @ = b. Of these, only

a = 2 and b = 0 produces a point of the affine plane that is a zero of the
second factor a? — ab — 3a — 4b 4 2 in the determinant of part (a); but
these values force the points B(0,0), C(2,0), and D(2a, 2b) to be collinear,
contrary to the assumption that we start with five non-collinear points. The
other two common points have b = 1 as desired; the choice (a,b) = (7,1)

produces an affinely regular pentagon while (a,b) = (—%, 1) produces an
affinely regular pentagram.

Part (a) also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria
(including a counterexample); part (b) solved by JOEL SCHLOSBERG, Bayside, NY, USA.

B e WSS D W

3065. [2005 : 397, 399] Proposed by Gabriel Dospinescu, Paris, France.

Let ABC be an acute-angled triangle, and let M be an interior point
of the triangle. Prove that

1 1 1 9 (sin /AMB sin/ZBMC sinACMA)

MA+MB+MC Z AB + BC + CA

Solution by Michel Bataille, Rouen, France.

Let d,, dp, and d. denote the distances from point M to the sides BC,
CA, and AB, respectively. Using the Law of Sines for triangle BMC, we
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obtain
5. sin/ZBMC _ sin/MCB + sinZM BC
BC MB MC
_ do o da — 5. da
MB-MC MB-MC MB-MC
Thus,
sin/BMC dg
BC ~ MB-MC'’
Similarly,
sin/CM A _ dp and sin/AMB _ d. .
CA MC-MA AB MA-MB

It follows that the proposed inequality is equivalent to the inequality

MB-MC+MC-MA+MA-MB > 2(MA-d,+MB-dpy+MC-d.),

which is known to be true (see [1] or [2]). This completes the proof.
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Also solved by ARKADY ALT, San Jose, CA, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; YUFEI ZHAO, student, Don Mills Collegiate Institute, Toronto,
ON; L1 ZHOU, Polk Community College, Winter Haven, FL, USA; and the proposer.

Y e W S D W
3066. [2005 : 397, 400] Proposed by Gabriel Dospinescu, Paris, France.

Given an integer n > 2, let A;, A3, ..., A, and B,, B,, ..., B, be
subsets of S = {1, 2, ..., n} with the property that for all 4, j € S, the
subsets A; and B; have exactly one element in common. Prove that, if there
are at least two distinct subsets among B;, Bs, ..., B,, then there exists a
non-empty subset 7' C S that has an even number of elements in common
with each of the subsets A;, A5, ..., A,.

Solution by Tom Leong, Brooklyn, NY, USA.

Let z;; denote the element common to A; and Bj, and let B; # B,
say. Then T = (B; U B3) \ (B1 N By) is non-empty and meets each of
A,, Ay, ..., A, in zero or two elements. Indeed, if ;; € B, N By, then
;1 = x;2 and T' N A; is empty; while if z;; € B; \ B, then ;5 € By \ B;
and TN A; = {x;1, Tiz}.

Also solved by KATHLEEN E. LEWIS, SUNY Oswego, Oswego, NY, USA; JOEL
SCHLOSBERG, Bayside, NY, USA; YUFEI ZHAO, student, Don Mills Collegiate Institute,
Toronto, ON; LI ZHOU, Polk Community College, Winter Haven, FL, USA; and the proposer.

As in the featured solution, most solvers used the symmetric difference By A B2 (which

is the set of all elements contained in exactly one of the two sets By and Bz) for the desired
subset T'. Only Schlosberg observed that the symmetric difference has an even intersection with
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each A; more generally when each A; has an odd intersection with each B; (rather than just
a single common element). Specifically,

Let A1, A2, ..., Am, B, and C be subsets of a finite set such if |[A; N B| and
|A; N C| are both odd for all ¢, then |A; N (BAC)| is even for all 4.
— S N ™)

3067. [2005 : 398, 400] Proposed by Gabriel Dospinescu, Paris, France.
Find all functions f : (0, 00) — (0, co) such that

1. £(f(f(=))) + 2z = f(3z) for allz > 0, and
2. lim (f(z) —xz) = 0.

Composite of very similar solutions by Joel Schlosberg, Bayside, NY, USA;
and the proposer.

The function f(x) = =« clearly has the required properties. We will
prove that it is the only function with these properties.

Suppose that a function f : (0,00) — (0, 00) has properties 1 and 2.
For any = > 0, property 1 implies that

f@) = 2o+ £(£(f(32) > Za.

Define a sequence {a,}3 , by setting a; = 2 and an41 = 3a? + 2 for all
n € N. We will prove by induction that f(z) > a,z for all  and n.

The case n = 1 was proven above. Assume that f(x) > a,x for some
n € N and all £ > 0. Then, for all z > 0,

F(£(£(32)) > anf(F(32)) > a2f(3a) > - e,
and hence,
f(x) = %:c + f(f(f(%m))) > %:c—l—af’l-%w = ap41T.

This completes the induction.
. : ad +1% 413
Applying the AM-GM Inequality, we get a,,+1 = % > an,
for all n. Thus, the sequence {a,} is increasing. Furthermore, 0 < a,, < 1
for all n, as can be shown by an easy induction. Therefore, the sequence

converges. Letting u denote its limit, we have

— s _ . 1.3 2 1,3 2
W= fimann = i (genty) = gut s
Hence, u® — 3u + 2 = 0, from which we get u = 1 oru = —2. But u = —2

is impossible, since a,, > 0 for all n. Therefore v = 1. Since f(z) > a,x
for all n and =, we obtain, for all z > 0,

f(x) > lim a,z = x.

n—oo
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For all > 0, since f(x) > =, we have

F(FF@)) > £(F@) > f(@),
and hence, using property (a) again,
f32) =32 = f(f(f(2))) —2 > f(z)—x.
By induction, we then obtain f(z) — z < f(3"z) — 3"z for all n € N.

Since lim (f(3™xz) — 3™x) = 0 (by property 2), we have f(z) —z < 0;

that is, f(z) < =.
We have shown that z < f(z) < « for all z > 0. We conclude that
f(x) =z forall z > 0.

There was one incomplete solution submitted.

—— | NS

3068. [2005 : 398, 400] Proposed by Vasile Cirtoaje, University of Ploiesti,
Romania.

Let a, b, c be non-negative real numbers, no two of which are zero.

Prove that
\/+48a+\/+48b+\/+480 > 15,

and determine when there is equality.

Solution by Li Zhou, Polk Community College, Winter Haven, FL, USA.

Without loss of generality, we may assume that a > b > ¢ > 0 and

thata + b+ c=1. Let f(x) = 147 48z f0r0<ac<1 Then
’ . 24
F@) = V(A —z)3(1 + 47x)
and  £"(x) 48(47x — 11)

VA —x)5(Q +47z)3

The tangent line to the graph of f(x) at the point (%, 5) has equation
T(z) = 32217 Setting f(z) = T(x), we obtain 12(3z —1)?(27z —2) = 0,
from which we see that the graphs of the functions f and T intersect again
at x = Z. Define

1= ifZ <a:<—
9(@) = {f(:c) lf;gx<1.

Clearly, the function g is convex and g(z) < f(x) for 5 Sz < 1.
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2 _ 23
Ifb< 5, thena =1—b—c> 37, and therefore,

fla) > (%) = V217 > 15,

which implies that the original inequality holds. Hence, we can further

assume that b > 2.
If c > %, then, applying Jensen’s Inequality, we obtain

f(a) 4+ f(b) + f(c) > g(a)+g(b) +g(c)
> 3g(3(at+b+o) = 3g(3) = 15,

with equality if and only if a = b =c = 3.

If L < ¢ < Z, then f(¢) > f(5) = 2 and, applying Jensen’s

Inequality, we obtain
fla)+ f(®) > g(a)+g(b) > 2g(3(a+b) > 29(%) > 13.

Thus, f(a) + f(b) + f(c) > 15, and the original inequality holds again.
Finally, consider ¢ < 1—17 Then, applying Jensen’s Inequality, we have

f(a)+ f(b) + f(c) > g(a)+g®) + f(c) > 2g(i(a+b))+ f(c)
2f (3(a+b)) + f(c) = 2f(3(1 —¢) + f(c).
Define

n@) = 27 (157) + 1) = 2[0S0y LA

2 1+« 1—=x

for 0 < x < ;.. Then h(0) = 15 and

’ — 1 _— 4
hi(z) = 24 <\/(1 —x)3(1+47z) /(1 +x)3(49 — 4790)) '

Now, (1 + x)3(49 — 47z) — 16(1 — z)3(1 + 47x) = (3 — 1)k(x), where
k(z) = 235z° — 69922 + 505z — 33. It is easy to verify that k(5%) < 0,
k(1) >0, k(3) < 0, and k(2) > 0. Hence, k(z) < 0for 0 < = < 5. Thus,
h/(x) > 0, and therefore, h(x) > h(0) = 15for0 <z < ;L.

This completes the proof. In summary, equality holds if and only if
a = b = cor two of a, b, c are equal while the third is 0.

Also solved by WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; and the
proposer.

The proposer has proven the following, slightly more general result: If a > 0, b > 0,
c>0,and 0 < m < 24, then

1+2ma+ 1+2mb+ 1+2mc >3\/ﬁ
b+ec c+a a+b — m-

Y WSS L W
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30609. [2005 : 398, 400] Proposed by Cristinel Mortici, Valahia University
of Targoviste, Romania.

Let A, B € M2(C) be such that (AB)? = A%2B?. Prove that
det(I + AB — BA) = 1.

Solution by Michel Bataille, Rouen, France.

We will denote by tr(X) the trace of X € M>(C). Let S = AB — BA.
Since tr(M N) = tr(NM) for any pair of n x n matrices, tr(S) = 0 and,
moreover, tr(S?) = 0, since

tr(S?) = tr((AB)> — AB?’A — BA’B + (BA)?)
= tr((AB)?) — tr((AB*)A) — tr(B(A’B)) + tr(B(ABA))
tr((AB)?) — tr(A’B?) — tr(A’B?) + tr((AB)?*) = o0,

where the last equality results from the hypothesis (AB)2? = A2B?2.

By the Cayley-Hamilton Theorem, S$2 — (tr(S))S + det(S)I = 0; that
is, §? = —det(S)I. Taking traces gives 0 = tr(S?) = —2det(S). Thus,
rank(S) < 2 and S? = 0. [Editor’s comment: Those who prefer to avoid
the Cayley-Hamilton Theorem can observe that tr(S) = 0 implies that the
eigenvalues of S are ), while tr(S2) = 0 implies that 2% = 0; therefore,
A = 0 and S is nilpotent. ]

Should S = 0, then det(I+S) = det(I) = 1. Otherwise, rank(S) =1
and S is similar to T' = ( 8 (3
u is a non-zero vector in range(.S) and v is such that {u, v} is a basis of C2, we
have Su = 0 (since §? = 0) and Sv = au for some complex «.) Therefore,

I+ SissimilartoI +T = ( (1) ? ),anddet(I+S) =det(I+T)=1.

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;
WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; RONGZHENG ]IAO, Yangzhou

University, Yangzhou, China; L1 ZHOU, Polk Community College, Winter Haven, FL, USA; and
the proposer.

for some non-zero complex number «. (If

——— | NS

3070. [2005 : 398, 400] Proposed by Zhang Yun, High School attached to
Xi’ An Jiao Tong University, Xi ’ An City, Shan Xi, China.

Let x4, 3, ..., T, be positive real numbers such that
Tyt T2+t Th > T1T20 Ty

Prove that
@@z @)t (277 af T ) >

and determine when there is equality.
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Solution by Joel Schlosberg, Bayside, NY, USA.

For n = 2, we are required to prove that (z;z2) '(z1 + z2) > 1
if ¢y + 2 > x;x5. This is trivially true. Equality holds in this case if and
Ol'lly if 1+ T3 = T1T3.

Suppose now that n > 3. By the AM-GM Inequality,

n—1 n—1 —1
T + Ty + ..o+ m:

n

n—1 n—1 n—1
> (ml To AR iy )

n

—1
n .

e (wlwz...wn)

Thus,
— — n(n—2) n(n—2)

(m;b 1 + gjg 1 + .-+ mz_l) n—1 Z n n—-1 (?131 e mn)n_z , (1)
with equality if and only if 277! = 23! = ... = 2?1, which is equivalent
toxy =20 =+ =x,.

Since n — 1 > 1, the Power Mean Inequality gives us
_1
oy T a4\ S Tt @zt Tn
n - n '
that is,

(m?_1+w;_1+---+w2_1)ﬁ > n_%(ml-l—:cg-l—---—l-wn). @)

Equality holds here if and only if 1 = 3 = - .- = z,,.
Multiplying (1) and (2), we get

(w;L—l + cee + wz_l)n_l Z nn_2(m1 . e mn)n_z(wl _|_ . e _|_ wn) .
fxzy +xz2+:--+x, > x1---x,, then we conclude that
(il,‘;l_l + .. _|_ w:—l)n—l 2 nn—Z(wl . wn)n—l .

and the required inequality follows. Furthermore, we have equality if and

onlyife;, =z =---=z,andzy + 2+ -+ + x,, = 122 - - - T, Which

occurs if and only if the common value x satisfies nxz = ™. Therefore, we
1

get equality ifand only if ¢y = --. = z,, = n»-7.

Also solved by MICHEL BATAILLE, Rouen, France; LI ZHOU, Polk Community College,
Winter Haven, FL, USA; and the proposer. The inequality only was proved by MOHAMMED
AASSILA, Strasbourg, France; ARKADY ALT, San Jose, CA, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; VEDULA N. MURTY, Dover, PA, USA; and YUFEI ZHAO,
student, Don Mills Collegiate Institute, Toronto, ON.

Y WSS L W
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3071. [2005 : 398, 400] Proposed by Arkady Alt, San Jose, CA, USA.

Let & > —1 be a fixed real number. Let a, b, and ¢ be non-negative
real numbers such thata + b+ ¢ =1 and ab + bc + ca > 0. Find

[ (1 4+ ka)(1 + kb)(1 + ke)
m‘“{ 1-a)1-b)(1—oc }

Solution by Michel Bataille, Rouen, France, modified by the editor.
The required minimum is min {1 (k + 3)3, (k + 2)?}.
First, we establish the following inequality:
4(ab+ bc+ ca) < 1+ 9abe. ¢))
Using the fact that a + b + ¢ = 1, we get

1 — 4(ab + bc + ca) + 9abe
= (a+b+c)3—4(a+b+c)(ab+bc+ca)+9abc
= a(a—b)(a—c)+bb—c)(b—a)+c(c—a)(c—b) >0,

where the last line is Schur’s Inequality. This proves (1).
We also claim that

ab+ bc+ ca > 9abe. 2)
Indeed,

ab+bc+ca = (ab+bc+ ca)(a+b+c)
= a?b+ ab® + b%c + bc? + c%a + ca® + 3abe
> 6abc + 3abc = 9abc,

where the inequality follows by an application of the AM—-GM Inequality.
Turning back to the problem, we note that it is not possible for a, b,
or c to equal 1. If a = 1, for example, then b = ¢ = 0, which means that
ab + bc + ca = 0, a contradiction. Thus, a, b, ¢ € [0,1). Let
(1 + ka)(1 + kb)(1 + kc)
A—a)T-b)(1—c)
k3abe + k:z(ab +bc+ca)+k+1
ab + be + ca — abe

k2abe + 1
_ 12
=k +(k+1)ab+bc+ca—abc'

Q(a,b,c)

Note that Q (3,1,1) = 2(k+3)®and Q (0, 3, 3) = (k + 2)2.
Case 1. k2 < 5.

We prove that Q(a,b,c) > Q(3,%,3). Since k + 1 > 0, a straight-
forward calculation shows that this inequality is equivalent to

k?(ab + bc + ca — 9abc) + 27(ab + be + ca — abe) < 8. 3)
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The term involving k2 is non-negative, in view of (2). Since k2 < 5, the left
side of (3) is at most 8(4(ab + bc + ca) — 9abc) and (3) follows from (1).

Thus, Q (3,1, 1) = £(k + 3)® is the minimum value of Q.

Case 2. k? > 5.
We prove that Q(a,b,c) > Q (0,1, 1). Since k + 1 > 0, we find that
this inequality is equivalent to

1+ 4(abc — (ab + bec + ca)) + k2abc > 0.

This holds by (1) because k> > 5. Thus, Q(0,%,1) = (k + 2)? is the
minimum value of Q.

Noticing that
s(k+3)% —(k+2)? = F(k+1)(k* —5),

we see that 2(k + 3)® > (k + 2)%if k2 > 5and (k + 2)? > £(k + 3)®
if k2 < 5. The announced result follows.

Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; JOE
HOWARD, Portales, NM, USA; RONGZHENG J]IAO, Yangzhou University, Yangzhou, China;

JOEL SCHLOSBERG, Bayside, NY, USA; L1 ZHOU, Polk Community College, Winter Haven, FL,
USA; and the proposer.

——— | NS
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