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The Canadian Mathematical Olympiad (CMO) is an annual national mathematics competition sponsored 
by the Canadian Mathematical Society (CMS) and is administered by the Canadian Mathematical 
Olympiad Committee (CMO Committee), a sub-committee of the Mathematical Competitions Committee. 
The CMO was established in 1969 to provide an opportunity for students who performed well in various 
provincial mathematics competitions to compete at a national level. It also serves as preparation for those 
Canadian students competing at the International Mathematical Olympiad (IMO). 

Students qualify to write the CMO by earning a sufficiently high score on the Canadian Open Mathematical 
Challenge (COMC). This year, the top 67 COMC scores were invited outright to write the CMO; all but 
seven accepted. Approximately 200 others, next in rank, were invited to send solutions to a Repêchage 
set of ten problems posted on line within a week to the University of Waterloo. Thirty-five students were 
invited on the basis of this, of which 31 accepted. I am grateful to Ian VanderBurgh for setting this up 
and assembling a team of markers, consisting of Ed Anderson, Lloyd Auckland, Ed Barbeau, Enzo Carli, 
Eddie Cheung, Rad de Peiza, Larry Rice, Jim Schurter, Ian VanderBurgh and Kyle Willick, to go through 
the 126 scripts received.

The Society is grateful for support from the Sun Life Assurance Company of Canada as sponsor of the 
2008 Canadian Mathematical Olympiad and the other sponsors which include: the Ministry of Education 
of Ontario; the Ministry of Education of Quebec; Alberta Learning; the Department of Education, New 
Brunswick; the Department of Education, Newfoundland and Labrador; the Department of Education, the 
Northwest Territories; the Department of Education of Saskatchewan; the Department of Mathematics 
and Statistics, University of New Brunswick at Fredericton; the Centre for Education in Mathematics and 
Computing, University of Waterloo; the Department of Mathematics and Statistics, University of Ottawa; 
the Department of Mathematics, University of Toronto; the Department of Mathematics, University of 
British Columbia; Nelson Thompson Learning; John Wiley and Sons Canada Ltd.; McGraw-Hill; A.K. 
Peters and Maplesoft. 

I am very grateful to the CMO Committee members who submitted problems to be consdered for the 
2008 competition: Ed Doolittle, Chris Fisher, Valeria Pandelieva, Naoki Sato, Adrian Tang and Jacob 
Tsimerman. The papers were marked by Ed Barbeau, Man-Duen Choi, Felix Recio and  Lindsey Shorser. 
Thanks go to Tom Griffiths of London, ON and Kalle Karu of the University of British Columbia for 
validating the paper and to Joseph Khoury for translating the paper and the solutions into French. I am 
indebted for the hard work done at CMS headquarters by Susan Latreille and the Executive Director, 
Graham Wright, whose commitment and zeal is a vital ingredient of the success of the CMO.

Ed Barbeau, Chair 
Canadian Mathematical Olympiad Committee 
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The 40th (2008) Canadian Mathematical Olympiad was written on Wednesday, March 26, 2008. A total 
of 96 students from 57 schools (52 in Canada, 3 in the US and 2 abroad) wrote the paper. Seven Canadian 
provinces were represented, with the number of contestants as follows:

BC (20)	 AB (5)	 SK (3)	 MB (3)	 ON (49)	 QC (3)	 NB (1). 
 
The 2008 CMO consisted of five questions, each marked out of 7. The maximum score attained by a 
student was 28. The official contestants were grouped into four divisions according to their scores as 
follows:

Division           Range of Scores	 No. of Students
	I	 21 - 28	 	 	 8

	 II	 13 - 19	 	 	 17
	 III	 7 - 12	 	 	 29
	 IV	 0 - 6	 	 	 42

The following tables give the scores obtained on the COMC along with the corresponding scores obtained 
by candidates on the CMO. Students obtaining scores 72-80 qualified directly to write the CMO; students 
with scores 65-71 qualified through the Repêchage.

80 (26, 24, 15)
79 (21, 19, 15)
78 (23, 12, 10)
77 (28, 25, 18)
76 (12, 11, 11, 7, 6)
75 (15, 8, 5, 3)
74 (17, 17, 14, 14, 10, 6, 6, 3, 3, 3, 1)
73 (25, 21, 9, 9, 8, 7, 2, 2, 1, 0)
72 (15, 15, 11, 10, 9, 7, 5, 5, 4, 4, 2, 2, 1)

71 (19, 16, 11)
70 (4, 1)
69 (17, 4)
68 (19)
67 (13, 9, 8, 5, 1)
66 (11, 11, 10, 9, 9, 7, 6, 4, 1)
65 (10, 3, 3, 0)
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FIRST PRIZE — Sun Life Financial Cup — $2000

 
Chen Sun	

A.B. Lucas Secondary School, London, Ontario

 
SECOND PRIZE — $1500

Jonathan Schneider 
University of Toronto Schools, Toronto, Ontario

 
THIRD PRIZE — $1000

Yan Li 
Dr. Norman Bethune Collegiate Institute, Toronto, Ontario

HONOURABLE MENTIONS — $500

Dimitri Dziabenko 
Don Mills Collegiate Institute	

Toronto, ON

Neil Gurram 
ICAE	

Troy, MI

Danny Shi 
Sir Winston Churchill High School	

Calgary, AB

Jarno Sun 
Western Canada High School	

Calgary, AB

Tianyao Zhang 
Sir John A. Macdonald Collegiate Institute	

Toronto, ON
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Division 1 
21-28

Chen Sun	 	 	 A.B. Lucas S.S.	 	 ON
Jonathan Schneider	 	 UTS	 	 	 ON
Yan Li	 	 	 Dr. Norman Bethune C.I.	 ON
Dimitri Dziabenko	 	 Don Mills C.I.	 	 ON
Neil Gurram	 	 ICAE	 	 	 MI
Danny Shi	 	 	 Sir Winston Churchill H.S.	 AB
Jarno Sun	 	 	 Western Canada H.S.	 	 AB
Tianyao Zhang	 	 Sir John A. Macdonald C.I.	 ON

Division 2 
13-19

Mohammad Babadi	 Thornlea S.S.	 	 	 ON
Frank Ban	 	 Vincent Massey S.S.	 	 	 ON
Yuhan Chen	 Sir Winston Churchill C.V.I.	 	 ON
Robin Cheng	 Pinetree S.S.	 	 	 BC
Bo Cheng Cui	 West Vancouver S.S.	 	 	 BC
Tony Feng	 	 Phillips Academy	 	 	 MA
David Field	 Phillips Academy	 	 	 MA
Yuting Huang	 Johnston Heights S.S.		 	 BC
Joe Kileel	 	 Fredericton H.S.	 	 	 NB
Zhiqiang Liu	 Don Mills C.I.	 	 	 ON
Jingyuan Mo	 St. George’s School	 	 	 BC
Alexander Remorov	 William Lyon Mackenzie King C.I.		 ON
Jixuan Wang	 Don Mills C.I.	 	 	 ON
Weinan Peter Wen	 Vincent Massey S.S.	 	 	 ON
Anqi Zhang	 Vincent Massey S.S.	 	 	 ON
Linda Zhang	 Western Canada H.S.	 	 	 AB
Jonathan Zhou	 Burnaby North S.S.	 	 	 BC

Division 3 
7-12

Golam Tahrif Bappi	 	 Waterloo C.I.	 	 ON
Shalev Ben David	 	 Waterloo C.I.	 	 ON
Ram Bhaskar	 	 ICAE	 	 	 MI
Philip Chen	 	 Glenforest S.S.	 	 ON
Weiliang Chen	 	 Walter Murray C.I.	 	 SK 
Andrew Dhawan	 	 The Woodlands School	 ON
Henry Fung	 	 Glenforest S.S.	 	 ON
Fang Guo	 	 	 Richmond Hill H.S.	 	 ON
Tony Han	 	 	 Jarvis C.I.	 	 	 ON
Fan Jiang	 	 	 Albert Campbell C.I.	 	 ON
Heinrich Jiang	 	 Vincent Massey S.S.	 	 ON
Kwon Yong Jin	 	 Phillips Academy	 	 MA
Eric Gwangseung Kim		 Prince of Wales S.S.	 	 BC
Jung Hun Koh	 	 Phillips Academcy	 	 MA
Nikita Lvov	 	 Marianopolis College		 QC
Anupa Murali	 	 Derryfield School	 	 NH
Bill Pang	 	 	 Sir Winston Churchill S.S.	 BC
Owen Zhu Ren	 	 Magee S.S.		 	 BC
Mariya Sardarli	 	 McKernan J.H.S.	 	 AB
Alex Song	 	 	 Waterloo C.I.	 	 ON
Julian Sun	 	 	 Sir Winston Churchill S.S.	 BC
Ning Tang	 	 	 London International Academy	 ON
Ming Jing Wong	 	 A.B. Lucas S.S.	 	 ON

Xiao Xu	 	 	 Georges Vanier S.S.	 	 ON
Meng Ye	 	 	 Marianopolis College		 QC
Pei Jun Zhao	 	 London Central S.S.	 	 ON
Vincent Zhou	 	 Dr. Norman Bethune C.I.	 ON
Zimu Zhu	 	 	 Richmond Hill H.S.	 	 ON
Jonathan Zung	 	 University of Toronto Schools	 ON

Division 4 
0-6

Shek Wah Chan	 	 St. Paul’s Co-ed. College	 CN
Jerry Chen		 	 Moscrop S.S.	 	 BC
Lingjun Chen	 	 Don Mills C.I.	 	 ON
Chengcheng Gui	 	 St. John’s-Ravenscourt School	 MB
Adam Halski	 	 Kuwait English School		 KW
Ding Henry Hao	 	 Albert Campbell C.I.	 	 ON
Matthew Harrisontraino	 Marc Garneau C.I.	 	 ON
Kevin He	 	 	 Sir Winston Churchill S.S.	 BC	
Emily Wei-En Hsu	 	 Branksome Hall School	 ON
Yihuan Peter Huang	 	 Kingston C.V.I.	 	 ON
Navid Javadi	 	 Earl Haig S.S.	 	 ON	
Chen Jiang	 	 Central Technical School	 ON
Yangzi Jiang	 	 Waterloo C.I.	 	 ON 
Hee Woo Jun	 	 Pinetree S.S.	 	 BC
Randy Li	 	 	 Phillips Academy	 	 MA
Alex Liang		 	 Dr. Norman Bethune C.I.	 ON
William Lin	 	 Albert Campbell C.I.	 	 ON
Chieh Ming Liu	 	 Fraser Heights S.S.	 	 BC
Eric Liu	 	 	 Sir Winston Churchill S.S.	 BC
Xun Chao Max Liu	 	 Port Moody S.S.	 	 BC
David Ma	 	 	 Marianopolis College		 QC
Sudharshan Mohanram	 ICAE	 	 	 MI
Susanne Michelle Morill	 St. Mary’s Academy	 	 MB 
Ryan Peng		 	 Centennial Collegiate		 SK
Zhe Qu	 	 	 Sir Allan MacNab S.S.		 ON
Calvin Seo		 	 St. Andrew’s College	 	 ON
Yeongseok Suh	 	 York Mills C.I.	 	 ON
Hao Sun	 	 	 Centennial Collegiate		 SK
Tanya Tang		 	 Sir Winston Churchill S.S.	 BC
Russell Vanderhout 	 	 Fraser Heights S.S.	 	 BC
Kedi Wang		 	 Fort Richmond Collegiate	 MB
Richard Wang	 	 Sir Winston Churchill S.S.	 BC
Susan Wang	 	 Burnaby Central S.S.	 	 BC
Wen Wang		 	 Western Canada H.S.	 	 AB
Jun Wen	 	 	 London International Academy	 ON
Carrie Xing	 	 Marc Garneau C.I.	 	 ON
Vick Yao	 	 	 Vincent Massey S.S.	 	 ON
Victor Zhang	 	 Marc Garneau C.I.	 	 ON
Yunfan Zhang	 	 Phillips Academy	 	 MA
Dabo Zhao		 	 White Oaks S.S.	 	 ON
Steven Zhu	 	 Sir Winston Churchill S.S.	 BC
Yang Zhu	 	 	 Albert Campbell C.I.	 	 ON
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40th Canadian Mathematical Olympiad

Wednesday, March 26, 2008

1. ABCD is a convex quadrilateral for which AB is the longest side. Points M and N are located on
sides AB and BC respectively, so that each of the segments AN and CM divides the quadrilateral
into two parts of equal area. Prove that the segment MN bisects the diagonal BD.

2. Determine all functions f defined on the set of rational numbers that take rational values for which

f(2f(x) + f(y)) = 2x + y ,

for each x and y.

3. Let a, b, c be positive real numbers for which a + b + c = 1. Prove that

a − bc

a + bc
+

b − ca

b + ca
+

c − ab

c + ab
≤

3

2
.

4. Determine all functions f defined on the natural numbers that take values among the natural numbers
for which

(f(n))p ≡ n mod f(p)

for all n ∈ N and all prime numbers p.

5. A self-avoiding rook walk on a chessboard (a rectangular grid of unit squares) is a path traced by
a sequence of moves parallel to an edge of the board from one unit square to another, such that
each begins where the previous move ended and such that no move ever crosses a square that has
previously been crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m, n) be the number of self-avoiding rook walks on an m×n (m rows, n columns) chessboard
which begin at the lower-left corner and end at the upper-left corner. For example, R(m, 1) = 1 for
all natural numbers m; R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each
natural number n.

1
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1

Solutions - CMO 2008

1. ABCD is a convex quadrilateral in which AB is the longest side. Points M and N are located on sides
AB and BC respectively, so that each of the segments AN and CM divides the quadrilateral into two
parts of equal area. Prove that the segment MN bisects the diagonal BD.

Solution. Since [MADC] = 1
2 [ABCD] = [NADC], it follows that [ANC] = [AMC], so that MN�AC.

Let m be a line through D parallel to AC and MN and let BA produced meet m at P and BC produced
meet m at Q. Then

[MPC] = [MAC] + [CAP ] = [MAC] + [CAD] = [MADC] = [BMC]

whence BM = MP . Similarly BN = NQ, so that MN is a midline of triangle BPQ and must bisect BD.

2. Determine all functions f defined on the set of rationals that take rational values for which

f(2f(x) + f(y)) = 2x + y

for each x and y.

Solution 1. The only solutions are f(x) = x for all rational x and f(x) = −x for all rational x. Both of
these readily check out.

Setting y = x yields f(3f(x)) = 3x for all rational x. Now replacing x by 3f(x), we find that

f(9x) = f(3f(3f(x)) = 3[3f(x)] = 9f(x) ,

for all rational x. Setting x = 0 yields f(0) = 9f(0), whence f(0) = 0.

Setting x = 0 in the given functional equation yields f(f(y)) = y for all rational y. Thus f is one-one
onto. Applying f to the functional equation yields that

2f(x) + f(y) = f(2x + y)

for every rational pair (x, y).

Setting y = 0 in the functional equation yields f(2f(x)) = 2x, whence 2f(x) = f(2x). Therefore
f(2x) + f(y) = f(2x + y) for each rational pair (x, y), so that

f(u + v) = f(u) + f(v)

for each rational pair (u, v).

Since 0 = f(0) = f(−1) + f(1), f(−1) = −f(1). By induction, it can be established that for each intger
n and rational x, f(nx) = nf(x). If k = f(1), we can establish from this that f(n) = nk, f(1/n) = k/n and
f(m/n) = mk/n for each integer pair (m,n). Thus f(x) = kx for all rational x. Since f(f(x)) = x, we must
have k2 = 1. Hence f(x) = x or f(x) = −x. These check out.

Solution 2. In the functional equation, let

x = y = 2f(z) + f(w)

to obtain f(x) = f(y) = 2z + w and

f(6z + 3w) = 6f(z) + 3f(w)

1
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have k2 = 1. Hence f(x) = x or f(x) = −x. These check out.
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x = y = 2f(z) + f(w)

to obtain f(x) = f(y) = 2z + w and

f(6z + 3w) = 6f(z) + 3f(w)

1for all rational pairs (z, w). Set (z, w) = (0, 0) to obtain f(0) = 0, w = 0 to obtain f(6z) = 6f(z) and z = 0
to obtain f(3w) = 3f(w) for all rationals z and w. Hence f(6z + 3w) = f(6z) + f(3w). Replacing (6z, 3w)
by (u, v) yields

f(u + v) = f(u) + f(v)

for all rational pairs (u, v). Hence f(x) = kx where k = f(1) for all rational x. Substitution of this into the
functional equation with (x, y) = (1, 1) leads to 3 = f(3f(1)) = f(3k) = 3k2, so that k = ±1. It can be
checked that both f(x) ≡ 1 and f(x) ≡ −1 satisfy the equation.

Acknowledgment. The first solution is due to Man-Duen Choi and the second to Ed Doolittle.

3. Let a, b, c be positive real numbers for which a + b + c = 1. Prove that

a− bc

a + bc
+

b− ca

b + ca
+

c− ab

c + ab
≤

3
2
.

Solution 1. Note that
1 −

a− bc

a + bc
=

2bc
1 − b− c + bc

=
2bc

(1 − b)(1 − c)
.

The inequality is equivalent to

2bc
(1 − b)(1 − c)

+
2ca

(1 − c)(1 − a)
+

2ab
(1 − a)(1 − b)

≥
3
2
.

Manipulation yields the equivalent

4(bc + ca + ab− 3abc) ≥ 3(bc + ca + ab + 1 − a− b− c− abc) .

This simplifies to ab + bc + ca ≥ 9abc or
1
a

+
1
b

+
1
c
≥ 9 .

This is a consequence of the harmonic-arithmetic means inequality.

Solution 2. Observe that

a + bc = a(a + b + c) + bc = (a + b)(a + c)

and that a + b = 1 − c, with analogous relations for other permutations of the variables. Then

(b + c)(c + a)(a + b) = (1 − a)(1 − b)(1 − c) = (ab + bc + ca) − abc .

Putting the left side of the desired inequality over a common denominator, we find that it is equal to

(a− bc)(1 − a) + (b− ac)(1 − b) + (c− ab)(1 − c)
(b + c)(c + a)(a + b)

=
(a + b + c) − (a2 + b2 + c2) − (bc + ca + ab) + 3abc

(b + c)(c + a)(a + b)

=
1 − (a + b + c)2 + (bc + ca + ab) + 3abc

(ab + bc + ca) − abc

=
(bc + ca + ab) + 3abc
(bc + bc + ab) − abc

= 1 +
4abc

(a + b)(b + c)(c + a)
.

Using the arithmetic-geometric means inequality, we obtain that

(a + b)(b + c)(c + a) = (a2b + b2c + c2a) + (ab2 + bc2 + ca2) + 2abc
≥ 3abc + 3abc + 2abc = 8abc ,

2
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2whence 4abc/[(a + b)(b + c)(c + a)] ≤ 1
2 . The desired result follows. Equality occurs exactly when a = b =

c = 1
3 .

4. Find all functions f defined on the natural numbers that take values among the natural numbers for
which

(f(n))p ≡ n mod f(p)

for all n ∈ N and all prime numbers p.

Solution. The substitution n = p, a prime, yields p ≡ (f(p))p ≡ 0 (mod f(p)), so that p is divisible by
f(p). Hence, for each prime p, f(p) = 1 or f(p) = p.

Let S = {p : p is prime and f(p) = p}. If S is infinite, then f(n)p ≡ n (mod p) for infinitely many
primes p. By the little Fermat theorem, n ≡ f(n)p ≡ f(n), so that f(n) − n is a multiple of p for infinitely
many primes p. This can happen only if f(n) = n for all values of n, and it can be verified that this is a
solution.

If S is empty, then f(p) = 1 for all primes p, and any function satisfying this condition is a solution.

Now suppose that S is finite and non-empty. Let q be the largest prime in S. Suppose, if possible, that
q ≥ 3. Therefore, for any prime p exceeding q, p ≡ 1 (mod q). However, this is not true. Let Q be the
product of all the odd primes up to q. Then Q + 2 must have a prime factor exceeding q and at least one
of them must be incongruent to 1 (mod q). (An alternative argument notes that Bertrand’s postulate can
turn up a prime p between q and 2q which fails to satisfy p ≡ 1 mod q.)

The only remaining case is that S = {2}. Then f(2) = 2 and f(p) = 1 for every odd prime p. Since
f(n)2 ≡ n (mod 2), f(n) and n must have the same parity. Conversely, any function f for which f(n) ≡ n
(mod 2) for all n, f(2) = 2 and f(p) = 1 for all odd primes p satisfies the condition.

Therefore the only solutions are
• f(n) = n for all n ∈ N;
• any function f with f(p) = 1 for all primes p;
• any function for which f(2) = 2, f(p) = 1 for primes p exceeding 2 and f(n) and n have the same

parity.

5. A self-avoiding rook walk on a chessboard (a rectangular grid of squares) is a path traced by a sequence
of rook moves parallel to an edge of the board from one unit square to another, such that each begins
where the previous move ended and such that no move ever crosses a square that has previously been
crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m,n) be the number of self-avoiding rook walks on an m × n (m rows, n columns) chessboard
which begin at the lower-left corner and end at the upper-left corner. For example, R(m, 1) = 1 for all
natural numbers m; R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each natural
number n.

Solution 1. Let rn = R(3, n). It can be checked directly that r1 = 1 and r2 = 4. Let 1 ≤ i ≤ 3 and
1 ≤ j; let (i, j) denote the cell in the ith row from the bottom and the jth column from the left, so that the
paths in question go from (1, 1) to (3, 1).

Suppose that n ≥ 3. The rook walks fall into exactly one of the following six categories:

(1) One walk given by (1, 1) → (2, 1) → (3, 1).

(2) Walks that avoid the cell (2, 1): Any such walk must start with (1, 1) → (1, 2) and finish with (3, 2) →
(3, 1); there are rn−1 such walks.

(3) Walks that begin with (1, 1) → (2, 1) → (2, 2) and never return to the first row: Such walks enter the
third row from (2, k) for some k with 2 ≤ k ≤ n and then go along the third row leftwards to (3, 1); there
are n− 1 such walks.

3



Report - Fortieth Canadian Mathematical Olympiad 2008

�

whence 4abc/[(a + b)(b + c)(c + a)] ≤ 1
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c = 1
3 .
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• any function for which f(2) = 2, f(p) = 1 for primes p exceeding 2 and f(n) and n have the same
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5. A self-avoiding rook walk on a chessboard (a rectangular grid of squares) is a path traced by a sequence
of rook moves parallel to an edge of the board from one unit square to another, such that each begins
where the previous move ended and such that no move ever crosses a square that has previously been
crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m,n) be the number of self-avoiding rook walks on an m × n (m rows, n columns) chessboard
which begin at the lower-left corner and end at the upper-left corner. For example, R(m, 1) = 1 for all
natural numbers m; R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each natural
number n.

Solution 1. Let rn = R(3, n). It can be checked directly that r1 = 1 and r2 = 4. Let 1 ≤ i ≤ 3 and
1 ≤ j; let (i, j) denote the cell in the ith row from the bottom and the jth column from the left, so that the
paths in question go from (1, 1) to (3, 1).

Suppose that n ≥ 3. The rook walks fall into exactly one of the following six categories:

(1) One walk given by (1, 1) → (2, 1) → (3, 1).

(2) Walks that avoid the cell (2, 1): Any such walk must start with (1, 1) → (1, 2) and finish with (3, 2) →
(3, 1); there are rn−1 such walks.

(3) Walks that begin with (1, 1) → (2, 1) → (2, 2) and never return to the first row: Such walks enter the
third row from (2, k) for some k with 2 ≤ k ≤ n and then go along the third row leftwards to (3, 1); there
are n− 1 such walks.

3
(4) Walks that begin with (1, 1) → (2, 1) → · · · → (2, k) → (1, k) → (1, k + 1) and end with (3, k + 1) →
(3, k) → (3, k − 1) → · · · → (3, 2) → (3, 1) for some k with 2 ≤ k ≤ n− 1; there are rn−2 + rn−3 + · · · + r1
such walks.
(5) Walks that are the horizontal reflected images of walks in (3) that begin with (1, 1) → (2, 1) and never
enter the third row until the final cell; there are n− 1 such walks.
(6) Walks that are horizontal reflected images of walks in (5); there are rn−2 + rn−3 + · · · + r1 such walks.

Thus, r3 = 1 + r2 + 2(2 + r1) = 11 and, for n ≥ 3,

rn = 1 + rn−1 + 2[(n− 1) + rn−2 + rn−3 + · · · + r1]
= 2n− 1 + rn−1 + 2(rn−2 + · · · + r1) ,

and
rn+1 = 2n + 1 + rn + 2(rn−1 + rn−2 + · · · + r1) .

Therefore
rn+1 − rn = 2 + rn + rn−1 =⇒ rn+1 = 2 + 2rn + rn−1 .

Thus
rn+1 + 1 = 2(rn + 1) + (rn−1 + 1) ,

whence
rn + 1 =

1
2
√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 ,

and
rn =

1
2
√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 − 1 .

Solution 2. Employ the same notation as in Solution 1. We have that r1 = 1, r2 = 4 and r3 = 11. Let
n ≥ 3. Consider the situation that there are rn+1 columns. There are basically three types of rook walks.

Type 1. There are four rook walks that enter only the first two columns.

Type 2. There are 3rn−1 rooks walks that do not pass between the second and third columns in the
middle row (in either direction), viz. rn−1 of each of the types:

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;

(1, 1) −→ (2, 1) −→ (2, 2) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (2, 2) −→ (2, 1) −→ (3, 1) .

Type 3. Consider the rook walks that pass between the second and third column along the middle row.
They are of Type 3a:

(1, 1) −→ ∗ −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ,

or Type 3b:
(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ ∗ −→ (3, 1) ,

where in each case the asterisk stands for one of two possible options.

We can associate in a two-one way the walks of Type 3a to a rook walk on the last n columns, namely

(1, 2) −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2)

and the walks of Type 3b to a rook walk on the last n columns, namely

(1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ (3, 2) .

4
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(4) Walks that begin with (1, 1) → (2, 1) → · · · → (2, k) → (1, k) → (1, k + 1) and end with (3, k + 1) →
(3, k) → (3, k − 1) → · · · → (3, 2) → (3, 1) for some k with 2 ≤ k ≤ n− 1; there are rn−2 + rn−3 + · · · + r1
such walks.
(5) Walks that are the horizontal reflected images of walks in (3) that begin with (1, 1) → (2, 1) and never
enter the third row until the final cell; there are n− 1 such walks.
(6) Walks that are horizontal reflected images of walks in (5); there are rn−2 + rn−3 + · · · + r1 such walks.

Thus, r3 = 1 + r2 + 2(2 + r1) = 11 and, for n ≥ 3,

rn = 1 + rn−1 + 2[(n− 1) + rn−2 + rn−3 + · · · + r1]
= 2n− 1 + rn−1 + 2(rn−2 + · · · + r1) ,

and
rn+1 = 2n + 1 + rn + 2(rn−1 + rn−2 + · · · + r1) .

Therefore
rn+1 − rn = 2 + rn + rn−1 =⇒ rn+1 = 2 + 2rn + rn−1 .

Thus
rn+1 + 1 = 2(rn + 1) + (rn−1 + 1) ,

whence
rn + 1 =

1
2
√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 ,

and
rn =

1
2
√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 − 1 .

Solution 2. Employ the same notation as in Solution 1. We have that r1 = 1, r2 = 4 and r3 = 11. Let
n ≥ 3. Consider the situation that there are rn+1 columns. There are basically three types of rook walks.

Type 1. There are four rook walks that enter only the first two columns.

Type 2. There are 3rn−1 rooks walks that do not pass between the second and third columns in the
middle row (in either direction), viz. rn−1 of each of the types:

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;

(1, 1) −→ (2, 1) −→ (2, 2) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (2, 2) −→ (2, 1) −→ (3, 1) .

Type 3. Consider the rook walks that pass between the second and third column along the middle row.
They are of Type 3a:

(1, 1) −→ ∗ −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ,

or Type 3b:
(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ ∗ −→ (3, 1) ,

where in each case the asterisk stands for one of two possible options.

We can associate in a two-one way the walks of Type 3a to a rook walk on the last n columns, namely

(1, 2) −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2)

and the walks of Type 3b to a rook walk on the last n columns, namely

(1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ (3, 2) .

4The number of rook walks of the latter two types together is rn − 1− rn−1. From the number of rook walks
on the last n columns, we subtract one for (1, 2) → (2, 2) → (3, 2) and rn−1 for those of the type

(1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (2, 3) .

Therefore, the number of rook walks of Type 3 is 2(rn − 1 − rn−1) and we find that

rn+1 = 4 + 3rn−1 + 2(rn − 1 − rn−1) = 2 + 2rn + rn−1 .

We can now complete the solution as in Solution 1.

Solution 3. Let S(3, n) be the set of self-avoiding rook walks in which the rook occupies column n but
does not occupy column n+1. Then R(3, n) = |S(3, 1)|+ |S(3, 2)|+ · · ·+ |S(3, n)|. Furthermore, topological
considerations allow us to break S(3, n) into three disjoint subsets S1(3, n), the set of paths in which corner
(1, n) is not occupied, but there is a path segment (2, n) −→ (3, n); S2(3, n), the set of paths in which corners
(1, n) and (3, n) are both occupied by a path (1, n) −→ (2, n) −→ (3, n); and S3(3, n), the set of paths in
which corner (3, n) is not occupied but there is a path segment (1, n) −→ (2, n). Let si(n) = |Si(3, n)| for
i = 1, 2, 3. Note that s1(1) = 0, s2(1) = 1 and s3(1) = 0. By symmetry, s1(n) = s3(n) for every positive n.
Furthermore, we can construct paths in S(3, n + 1) by “bulging” paths in S(3, n), from which we obtain

s1(n + 1) = s1(n) + s2(n) ;
s2(n + 1) = s1(n) + s2(n) + s3(n) ;
s3(n + 1) = s2(n) + s3(n) ;

or, upon simplification,
s1(n + 1) = s1(n) + s2(n) ;
s2(n + 1) = 2s1(n) + s2(n) .

Hence, for n ≥ 2,
s1(n + 1) = s1(n) + 2s1(n− 1) + s2(n− 1)

= s1(n) + 2s1(n− 1) + s1(n) − s1(n− 1)
= 2s1(n) + s1(n− 1) .

and
s2(n + 1) = 2s1(n) + s2(n) = 2s1(n− 1) + 2s2(n− 1) + s2(n)

= s2(n) − s2(n− 1) + 2s2(n− 1) + s2(n)
= 2s2(n) + s2(n− 1) .

We find that
s1(n) =

1
2
√

2
(1 +

√
2)n−1 − 1

2
√

2
(1 −

√
2)n−1 ;

s2(n) =
1
2

(1 +
√

2)n−1 +
1
2

(1 −
√

2)n−1 .

Summing a geometric series yields that

R(3, n) = (s2(1) + · · · + s2(n)) + 2(s1(1) + · · · + s1(n))

=
�

1
2

+
1√
2

��

(1 +
√

2)n − 1√
2

�

+
�

1
2
− 1√

2

��

(1 −
√

2)n − 1
−
√

2

�

=
�

1
2
√

2

�

[(1 +
√

2)n+1 − (1 −
√

2)n+1] − 1 .

The formula agrees with R(3, 1) = 1, R(3, 2) = 4 and R(3, 3) = 11.

Acknowledgment. The first two solutions are due to Man-Duen Choi, and the third to Ed Doolittle.
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√
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=
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√
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√

2

�

=
�

1
2
√

2

�

[(1 +
√

2)n+1 − (1 −
√
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The formula agrees with R(3, 1) = 1, R(3, 2) = 4 and R(3, 3) = 11.
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The Graders’ Report

The grading was done by Ed Barbeau, Man-Duen Choi, Felix Recio and Lindsey Shorser. The papers in 
the top three divisions and most of those in the fourth were marked independently by two markers and all 
papers in division I were reviewed by four markers, as well as many in division II.

The paper was more difficult this year than in 2007, and it was decided to have but one geometry problem, 
but that one reasonably easy. There was less opportunity for part marks, and the final results reflect this.

As the papers were being marked, it became evident that there is an increasing gap between the background 
knowledge and sophistication of the top ten or twenty students and the rest, a matter that should be of some 
concern to those concerned about an adequate supply of prepared students entering university engineering 
and science programs. This makes it more difficult to prepare a paper, even for sixty or so invited students, 
that is a challenge for the top students while being accessible to the rest.

The contest buffs among the students now know as a matter of course results that the reader of this report 
might not have encountered until their undergraduate or even graduate years, if at all. They know how to 
solve linear recursion, are familiar with more advanced results of Euclidean geometry such as the theorems 
of Ceva and Menelaus, or the Ptolemy inequality, are adept at using transformation arguments (including 
inversion in a circle) in plane geometry, have at their command basic results in graph theory, are familiar with 
modular arithmetic and number theory results such as Fermat’s Little Theorem and the Chinese Remainder 
Theorem, know some differential calculus and have a larger supply of inequalities in their quivers, beyond 
the arithmetic-geometric means and Cauchy-Schwarz inequalities; two students turned to the Muirhead 
majorization inequalities to solve Question 3. The problems committee did not have most of these advanced 
techniques in mind in setting the problems; they were designed to be solved through basic reasoning and 
competent application of standard techniques.

Many students instinctively turn to formulas and computation without taking the time to consider the 
essence of a problem situation and try an argument that is more attuned to its structure. This was evident in 
Questions 1, 2 and 4.

Students invited to write the Canadian Mathematical Olympiad cannot expect to do well without preparing 
for the examination. This should involve reviewing problems of past contests of this level, as well as 
strengthening their backgrounds in areas in which the school curriculum is weak - geometry, basic 
combinatorics, inequalities and polynomial algebra. Plenty of material to this end can be obtained through 
the Canadian Mathematical Society (www.cms.math.ca) and the Mathematical Association of America 
(www.maa.org).

One flaw in the standard school syllabus became evident in the use either advanced or “clunky” techniques 
in solving problems. Some students are exposed superficially to more advanced mathematics such as 
trigonometry and calculus before they have become familiar and facile with more elementary geometry 
and algebra.

Each problem was marked out of 7.
The marks awarded on the several problems are given in the following
table:
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Problem 1: The solution mainly relied on the fact that two triangles on the same base and between the same 
parallels have equal area. Many students, however, cluttered their solutions by inserting altitudes and using 
the half base-times-height formula; while they usually got it correct, the result was a solution twice as long 
as it should have been. Several students resorted to analytic geometry, a method particularly cumbersome 
when the up-and-down formula for the area of a triangle was employed.

Problem 2: Functional equations problems tend to become harder when unwarranted restrictions are 
imposed on the function, and this situation was no exception. Some students, having had some calculus, 
reached immediately for the derivative, and got bogged down. They apparently do not realize that not 
every function admits a derivative. Quite a few students implicitly assumed continuity and drew from 
the  bijective character of f that it was monotone. In another direction, certain candidates took f to be 
a polynomial, in some cases a linear polynomial, and worked from there. Some solvers were familiar 
with the result that a function satisfying the equation g(x + y) = g(x) + g(y) on the rationals had the form 
g(x) = kx, and the statement of this fact without a proof was accepted by the markers. 

Problem 3: Performance on this problem was better than expected, and several effective methods were 
adduced to handling it. While an astute application of the arithmetic-goemetric means or harmonic-
arithmetic means inequality sufficed to bring it home, a few candidates brought much heavier machinery 
into play without making the solution any more efficient.

Problem 4: This was a tricky problem, but not done as well as expected. The possibility of congruence 
modulo 1 did not cause any difficulty except for one or two cases. Many candidates were familiar with the 
little Fermat theorem (and this should be regarded as an essential part of the preparation for the CMO); 
nevertheless, fewer identified the solutions f(n) = n or  f(p) = 1 for all primes p than we had hoped. Most of 
the candidates who gained points on this problem did derive early on that f(p) divided p and so had to be 
either 1 or p, for each prime p. A few thought that one of these alternatives always had to occur. Quite a few 
set f(n) = n + kp, at which point the solutions generally became hopelessly complicated.

Problem 5: This was intended to be a hard problem, and it did require the students to solve a linear recursion. 
However, four marks were available to any student who could set up the recursion; the main burden of the 
problem was the analysis of the different types of rook walks and the formulation of an induction process. 
We were disappointed at how few students were able to reason carefully enough to get even a good start at 
this. A couple of candidates misread the problem and had the walk ending in the upper-right corner.

Marks #1 #2 #3 #4 #5
7 30 7 23 0 1
6 1 3 2 0 0
5 4 1 3 1 0
4 6 4 2 2 1
3 6 9 8 4 1
2 8 18 14 9 3
1 15 29 15 29 15
0 13 15 25 12 33
- 13 10 4 39 42




