ILIYA BLUSKOV, University of Northern BC

Pair Covering Designs with Block Size 6

A t- (v, k, λ) covering design, denoted $(\mathcal{V}, \mathcal{B})$, where $v = |\mathcal{V}|$, is a finite family \mathcal{B} of k-subsets of \mathcal{V} , called *blocks*, such that each t-subset of \mathcal{V} occurs in at least λ blocks. The *covering number* $C_{\lambda}(v, k, t)$ is $\min |\mathcal{B}|$, where the minimum is taken over all t- (v, k, λ) covering designs. My talk is based on a recent joint work (with Abel, Greig and de Heer) on the covering number $C_1(v, 6, 2)$. This number meets the Schönheim bound:

$$C_1(v,k,2) \ge \left\lceil \frac{v}{k} \left\lceil \frac{v-1}{k-1} \right\rceil \right\rceil.$$

We show that $C_1(v, 6, 2)$ attains the Schönheim bound for all $v \equiv 2 \pmod{5}$. I will discuss direct combinatorial constructions and computer assisted searches related to this result.