MITJA MASTNAK, Dept. of Math, UBC, Room 121, 1984 Mathematics Road, Vancouver, BC V6T $1 Z 2$
About Linear Spaces of Matrices
If L is an m-dimensional linear subspace of $M_{n \times p}$, the space of $n \times p$ matrices, then we can identify the embedding $k^{m} \xrightarrow{\simeq}$ $L \subseteq M_{n \times p}$ with a bilinear map $k^{m} \times k^{n} \rightarrow k^{p}$ or with a linear map $k^{m} \otimes k^{n} \rightarrow k^{p}$. If we "switch" k^{m} and k^{n} then we get an embedding $k^{n} \rightarrow M_{m \times o}$, and hence an n-dimensional linear subspace L^{\prime} of $M_{m \times o}$. We study the relationship between L and L^{\prime} and give examples of situations where this duality can be exploited.

